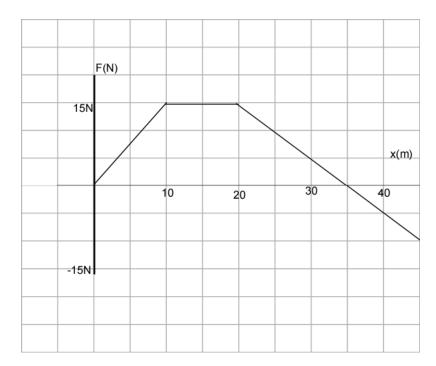
DO NOT TURN THIS PAGE!!!!

PHYSICS 50 WINTER 2010 EXAM 3

MAKE SURE TO SHOW ALL WORK IN COMPLETE DETAIL! NO CREDIT WILL BE GIVEN IF NO WORK IS SHOWN!!!!

- 1. An object of mass 2.0 kg is pushed through a displacement $\vec{s}=15m~\hat{i}-12m~\hat{j}$ by a force $\vec{F}=15N~\hat{i}-12N~\hat{j}$.
 - a) Calculate the work work done by the force.

b) Calculate the angle between \vec{s} and \vec{F} .


- 2. A helicopter lifts a 72 kg astronaut 15 m vertically from the ocean by means of a cable. The acceleration of the astronaut is g/10.
 - a) Calculate the work done by the cable on the astronaut.

 - b) Calculate the work done by gravity on the astronaut.
 c) Just before reaching the helicopter calculate the speed of the astronaut. (assume astronaut was lifted up from rest)

- 3. A 200 g block is pressed against a spring (K = 1400 N/m) until the block compresses the spring 10.0 cm from equilibrium. The spring rests at the bottom of a frictionless incline plane of angle 60° . The block is released from rest. (Use Work-Kinetic Energy Theorem to solve this problem)
 - a) Calculate the speed of the block when it passes through the equilibrium position of spring.
 - b) Calculate the maximum distance it moves up the incline plane.

4	4.	An elevator cab has a mass of 4500 kg and can carry a maximum load of 1800 kg. Calculate the minimum power output of the motor required to move the full load upward at 3.80 m/s.

5. The force acting on a particle is shown graphically below. Calculate the work done on the particle from x = 0 to x = 40 m.

