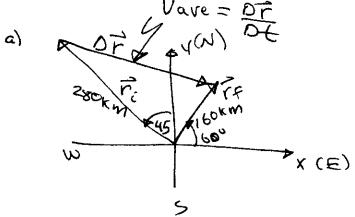
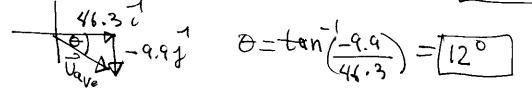

Name: KEY Physics 50/W10 Quiz 4

Make sure to show all work in complete detail. NO CREDIT will be given if no work is shown!!!



1. Consider the v vs. t graph for the motion of a particle below.


- a) Draw the graph for the a vs. t. (5 pts)
- b) Calculate the position of the particle at t = 70 s if x = 5 m at t = 0. (5 pts)

a)
$$a_1 = \frac{35 \text{ m/s}}{15 \text{ s}} = +2.3 \text{ m/s}^2$$

 $a_2 = \frac{0}{15} = 0 \text{ m/s}^2$
 $a_3 = -\frac{35 \text{ m/s}}{40 \text{ s}} = -0.875 \text{ m/s}^2$
b) $DX = Areg
 $X - X_6 = \frac{1}{2}(15)(36) + (15)(35) + \frac{1}{2}(40)35$
 $X - 5 = -1488 \text{ m}$
 $X = 1593 \text{ m}$$

- 2. An air traffic controller observes an airplane. The displacement from the control tower to the plane is given by vector \mathbf{r}_i which has a magnitude of 280 km and points in a direction of 45° west of north. The displacement 6.0s later (also relative to the control tower) is given by vector \mathbf{r}_f and has a magnitude of 160 km in a direction of 60° north of east. (10 pts)
 - a) Sketch the vectors \mathbf{r}_i , \mathbf{r}_f , and $\Delta \mathbf{r} = \mathbf{r}_f \mathbf{r}_i$.
 - b) Indicate the direction of the vector \mathbf{V}_{ave} on the diagram in part (a).
 - c) Calculate the displacement vector in unit vector notation.
 - d) Calculate the average velocity vector in unit vector notation during the 6.0 s interval.
 - e) Calculate the magnitude and direction of Vave.

b) see graph
c)
$$D\vec{r} = \vec{r_{f}} - \vec{r_{r}}$$

 $= (160 \cos(0\vec{c} + 160 \sin(0\vec{d})))$
 $-(-280 \sin(45\vec{c} + 280\cos(45\vec{d})))$
 $D\vec{r} = 278\vec{c} - 58.4\vec{d}$ (km)
d) $Vave = D\vec{r} = -46.3\vec{c} - 9.9\vec{d}$ (km)
 $\vec{D}\vec{t} = -46.3\vec{c} - 9.9\vec{d}$ (km)
 $\vec{D}\vec{t} = -46.3\vec{c} - 9.9\vec{d}$ (km)
 $\vec{D}\vec{t} = -46.3\vec{c} - 9.9\vec{d}$ (km)

