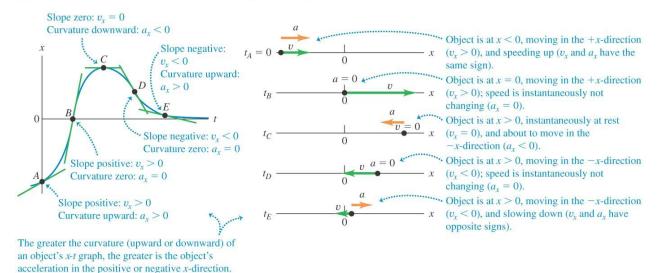


Recall from calculus that if:

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

a)
$$\frac{d^2 f(x)}{dx^2} > 0$$
 on an open interval (a,b), then $f(x)$ is concave up on (a,b).

 $\frac{d^2 f(x)}{dx^2} < 0 \text{ on an open interval (a,b), then } f(x) \text{ is concave down on (a,b).}$ b)


This implies that if:

a')
$$a = \frac{d^2 x(t)}{dx^2} > 0$$
 on an open interval (a,b), then $x(t)$ is concave up on (a,b).

b')
$$a = \frac{d^2 x(t)}{dx^2} < 0$$
 on an open interval (a,b), then $x(t)$ is concave down on (a,b).

(a) x-t graph

(b) Object's motion

(b) Object's position, velocity, and acceleration on the x-axis