
What is this “testing” everyone
keeps talking about?

Kevin Metcalf (MetcalfKevin@DeAnza.edu)
Slides and sample code at: 

deanza.edu/faculty/metcalfkevin/talks.html

http://deanza.edu/faculty/metcalfkevin/talks.html

What is this “testing” everyone
keeps talking about?

Or: “Oh crap, my talk was accepted; I should probably
actually learn how to test stuff in Perl and maybe someone

else can learn from my mistakes along the way…”

Perl Testing Ecosystem

• Google search for “perl testing” generates
13,100,000 results (in .25 seconds)

• ok(1, '1 is true');

re: me and testing

• I’ve been coding in Perl for > 20 years.

• Before 3/20/2015 of this year, I had never written a
single test (in any language).

• This talk was accepted on 3/15/2015.

• I will not make any assumptions about your
knowledge of testing - including whether it’s useful.

Sample Program
You need to write a program to validate a keycard (or

"fob") has access to a specific door.

Program Features
• Program will take two CL args: door num, fob num.

• If not called with exactly two inputs, explain usage.

• If called with a valid door/fob combo, return "Access Allowed".

• If called with invalid door/fob combo, return "Access Denied".

• A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

• A "fob" is a 16-digit hex number.

 1 #!/usr/bin/perl
 2 use warnings;
 3 use strict;
 4
 5 # UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
 6 if (scalar @ARGV != 2) {
 7 my $usage =<<"EOT";
 8 Usage: $0 DOORNUM FOBNUM
 9 DOORNUM is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. A1101)
 10 FOBNUM is 16 hex digits.
 11 EOT
 12 die "\n$usage\n";
 13 }
 14
 15 my $door_number = shift;
 16 my $fob_number = shift;
 17 print "Validating [$fob_number] has access to [$door_number]... ";
 18
 19 if (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1101'))
 20 { print "OK.\n"; }
 21 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1102'))
 22 { print "OK.\n"; }
 23 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1103'))
 24 { print "OK.\n"; }
 25 else { print "ACCESS DENIED.\n"; }

example 001

[kevin@trggit example001]$./fob_access.pl

Usage: ./fob_access.pl DOORNUM FOBNUM
 DOORNUM is a number of format BFFDDD (BUILDING, FLOOR, NUMBER - e.g. A01101)
 FOBNUM is 16 hex digits.

[kevin@trggit example001]$./fob_access.pl A01101 0123456789ABCDEF
Validating [0123456789ABCDEF] has access to [A01101]... OK.

[kevin@trggit example001]$./fob_access.pl Q01101 0123456789ABCDEF
Validating [0123456789ABCDEF] has access to [Q01101]... ACCESS DENIED.

[kevin@trggit example001]$./fob_access.pl A01101 0123456789000000
Validating [0123456789000000] has access to [A01101]... ACCESS DENIED.

[kevin@trggit example001]$

example 001

A better approach to
testing your code…

If only there was a simple way to test our code!

A better approach would…

• Allow us to run all our tests at once.

• Be automated as much as possible.

• Work even if we refactor our code.

• Help ensure new code doesn’t break something that used to work.

• Force us to code in smaller, easier to maintain chunks.

• Etc

TAP
Test Anything Protocol

1..2
ok 1 - The variable $a contains the value "4"
ok 2 - $a plus $b = 9

Sample TAP output…

 1 #!/usr/bin/perl
 2 use warnings;
 3 use strict;
 4
 5 use Test::More tests => 2;
 6
 7 my $a = 4;
 8 my $b = 5;
 9
10 is($a, '4', 'The variable $a contains the value "4"');
11 is($a+$b, 9, '$a plus $b = 9');

Sample Perl test program

$ perl test_example.t
1..2
ok 1 - The variable $a contains the value "4"
ok 2 - $a plus $b = 9

example 005

 1 #!/usr/bin/perl
 2 use warnings;
 3 use strict;
 4
 5 use Test::More tests => 1;
 6
 7 my $a = 4;
 8 my $b = 99;
 9
10 is($a+$b, 9, '$a plus $b = 9');

What happens when a test fails?

$ perl example006/test_example.t
1..1
not ok 1 - $a plus $b = 9
Failed test '$a plus $b = 9'
at example006/test_example.t line 10.
got: '103'
expected: '9'
Looks like you failed 1 test of 1.

example 006

my $a = 4;
my $b = 5;
 
is($a+$b, 9, '$a plus $b = 9');

In module:
sub add_two {
 my $a = shift;
 my $b = shift;
 return $a+$b;
}

In Test Code: 
is(add_two(4,5), 9, 'add_two(4, 5) returned 9');

Some Test:More functions:

• is()  
is($a+$b, 9, '$a+$b is 9.');

• ok()  
ok($a, '$a is true.');

• like()  
like(mysub($a), qr/right/, 'Got
expected output from mysub($a)');

 1 #!/usr/bin/perl
 2 use warnings;
 3 use strict;
 4
 5 # UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
 6 if (scalar @ARGV != 2) {
 7 my $usage =<<"EOT";
 8 Usage: $0 DOORNUM FOBNUM
 9 DOORNUM is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. A1101)
 10 FOBNUM is 16 hex digits.
 11 EOT
 12 die "\n$usage\n";
 13 }
 14
 15 my $door_number = shift;
 16 my $fob_number = shift;
 17 print "Validating [$fob_number] has access to [$door_number]... ";
 18
 19 if (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1101'))
 20 { print "OK.\n"; }
 21 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1102'))
 22 { print "OK.\n"; }
 23 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1103'))
 24 { print "OK.\n"; }
 25 else { print "ACCESS DENIED.\n"; }

example 001

Test Driven Development
(way oversimplified)

1. Define a feature you want to implement.

2. Define the test cases for the feature.

3. Write just enough code to implement the feature.

4. Re-factor your code if needed.

Program Features
• Program will take two CL args: door num, fob num.

• If not called with exactly two inputs, explain usage.

• If called with a valid door/fob combo, return "Access Allowed".

• If called with invalid door/fob combo, return "Access Denied".

• A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

• A "fob" is a 16-digit hex number.

Where do we start?
1. Create a .pm file to hold your package code:  

e.g., Fobaccess.pm

2. Create a subroutine for each code section:  
e.g., sub validate_data()

3. Create a .t file to hold your test code:  
e.g., Fobaccess.t

4. "Use" your .pm file in your .t file and add your test
cases: 
e.g., use Fobaccess;

 1 #!/usr/bin/perl
 2 use warnings;
 3 use strict;
 4
 5 # UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
 6 if (scalar @ARGV != 2) {
 7 my $usage =<<"EOT";
 8 Usage: $0 DOORNUM FOBNUM
 9 DOORNUM is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. A1101)
 10 FOBNUM is 16 hex digits.
 11 EOT
 12 die "\n$usage\n";
 13 }
 14
 15 my $door_number = shift;
 16 my $fob_number = shift;
 17 print "Validating [$fob_number] has access to [$door_number]... ";
 18
 19 if (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1101'))
 20 { print "OK.\n"; }
 21 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1102'))
 22 { print "OK.\n"; }
 23 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1103'))
 24 { print "OK.\n"; }
 25 else { print "ACCESS DENIED.\n"; }

example 001

tests for usage sub
 sub validate_input()
 requires: exactly two inputs

• exactly two inputs

• less than two inputs

• more than two inputs

#!/usr/bin/perl
use warnings;
use strict;
use Test::More tests => 1;
use Fobaccess;

my @good_array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate_input(@good_array), qr/Correct/,
 'Exactly two inputs for validate_input() as expected.');

example 008

package Fobaccess;

use warnings;
use strict;

sub validate_input {
if (scalar @_ != 2) {
 my $usage =<<"EOT";
Usage: $0 DOORNUM FOBNUM
 DOORNUM is a number of format BFFDDD (BUILDING, FLOOR, NUMBER - e.g. A01101)
 FOBNUM is 16 hex digits.
EOT
 return $usage;
 }
return 'Correct number of inputs';
}

1;

example 008

#!/usr/bin/perl
use warnings;
use strict;
use Test::More tests => 1;
use Fobaccess;

my @good_array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate_input(@good_array), qr/Correct/,
'Exactly two inputs for validate_input() as expected.');

$ perl Fobaccess.t
1..1
ok 1 - Exactly two inputs for validate_input() as expected.

example 008

#!/usr/bin/perl
use warnings;
use strict;
use Test::More tests => 3;
use Fobaccess;

my @good_array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate_input(@good_array),
 qr/Correct/, 'Exactly two inputs for validate_input() as expected');

like(Fobaccess::validate_input('only1val'),
 qr/Usage/, 'Less than two inputs fails as expected for validate_input()');

like(Fobaccess::validate_input('3vals', '3vals', '3vals'),
 qr/Usage/, 'More than two inputs fails as expected for validate_input()');

$ perl Fobaccess.t
1..3
ok 1 - Exactly two inputs for validate_input() as expected
ok 2 - Less than two inputs fails as expected for validate_input()
ok 3 - More than two inputs fails as expected for validate_input()

example 009

A successful test…

• … Succeeds as expected

• … Fails as expected!

Program Features
• Program will take two CL args: door num, fob num.

• If not called with exactly two inputs, explain usage.

• If called with a valid door/fob combo, return "Access Allowed".

• If called with invalid door/fob combo, return "Access Denied".

• A "door" will include the building (A..Z), a floor (01..99), and a door
number (101..999).

• A "fob" is a 16-digit hex number.

 1 #!/usr/bin/perl
 2 use warnings;
 3 use strict;
 4
 5 # UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
 6 if (scalar @ARGV != 2) {
 7 my $usage =<<"EOT";
 8 Usage: $0 DOORNUM FOBNUM
 9 DOORNUM is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. A1101)
 10 FOBNUM is 16 hex digits.
 11 EOT
 12 die "\n$usage\n";
 13 }
 14
 15 my $door_number = shift;
 16 my $fob_number = shift;
 17 print "Validating [$fob_number] has access to [$door_number]... ";
 18
 19 if (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1101'))
 20 { print "OK.\n"; }
 21 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1102'))
 22 { print "OK.\n"; }
 23 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1103'))
 24 { print "OK.\n"; }
 25 else { print "ACCESS DENIED.\n"; }

example 001

tests for access
 sub test_access()
 requires: exactly two inputs, a door and a fob

• has less than two inputs

• has more than two inputs

• has two valid inputs - door and fob data

• has two invalid inputs - door and fob data

#!/usr/bin/perl
use warnings;
use strict;
use Test::More tests => 7;
use Fobaccess;

my @good_array = ('A01101', '0123456789ABCDEF');
ok(Fobaccess::validate_input(@good_array),
 'Two inputs expected for validate_input()');

like(Fobaccess::validate_input('only1val'),
 qr/Usage/, 'One input fails as expected for validate_input()');

like(Fobaccess::validate_input('3vals', '3vals', '3vals'),
 qr/Usage/, 'Three inputs fail as expected for validate_input()');

like(Fobaccess::test_access('only1val'),
 qr/Invalid number/, 'One input fails as expected for test_access()');

like(Fobaccess::test_access('3vals', '3vals', '3vals'),
 qr/Invalid number/, 'Three inputs fails as expected for test_access()');

like(Fobaccess::test_access(@good_array),
 qr/Yes/, 'Two valid inputs OK for test_access()');

like(Fobaccess::test_access('not_a_fob', 'not_a_door'),
 qr/No/, 'Two invalid inputs for test_access() fail as expected');

example 010

sub test_access {
 if (scalar @_ != 2)
 { return "Invalid number of inputs"; }

 my $door_number = shift;
 my $fob_number = shift;

 if (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A01101'))
 { return 'Yes'; }
 elsif (($fob_number eq '0123456789ABCDEF') &&($door_number eq 'A01102'))
 { return 'Yes'; }
 else { return 'No'; }
}

$ perl Fobaccess.t
1..7
ok 1 - Two inputs expected for validate_input()
ok 2 - Less than two inputs fails as expected for validate_input()
ok 3 - More than two inputs fails as expected for validate_input()
ok 4 - Less than two inputs fails as expected for test_access()
ok 5 - More than two inputs fails as expected for test_access()
ok 6 - Two valid inputs OK for test_access()
ok 7 - Two invalid inputs for test_access() fail as expected

example 010

#!/usr/bin/perl
use warnings;
use strict;
use Test::More tests => 7;
use Fobaccess;

my @good_array = ('A01101', '0123456789ABCDEF');
ok(Fobaccess::validate_input(@good_array),
 'Two inputs expected for validate_input()');

like(Fobaccess::validate_input('only1val'),
 qr/Usage/, 'One input fails as expected for validate_input()');

like(Fobaccess::validate_input('3vals', '3vals', '3vals'),
 qr/Usage/, 'Three inputs fail as expected for validate_input()');

like(Fobaccess::test_access('only1val'),
 qr/Invalid number/, 'One input fails as expected for test_access()');

like(Fobaccess::test_access('3vals', '3vals', '3vals'),
 qr/Invalid number/, 'One input fails as expected for test_access()');

like(Fobaccess::test_access(@good_array),
 qr/Yes/, 'Two valid inputs OK for test_access()');

like(Fobaccess::test_access('not_a_fob', 'not_a_door'),
 qr/No/, 'Two invalid inputs for test_access() fail as expected');

example 010

#!/usr/bin/perl
use warnings;
use strict;
use Test::More tests=>3;
use Fobaccess;

my @good_array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate_input(@good_array),
 qr/Correct/, 'Exactly two inputs for validate_input() as expected.');

SEVERAL MORE TEST CASES HERE! ...

like(Fobaccess::test_access('not_a_fob', 'not_a_door'),
 qr/No/, 'Two invalid inputs for test_access() fail as expected');

$ perl Fobaccess.t
1..3
ok 1 - Two inputs expected for validate_input()
ok 2 - Less than two inputs fails as expected for validate_input()
ok 3 - More than two inputs fails as expected for validate_input()
ok 4 - Less than two inputs fails as expected for test_access()
ok 5 - More than two inputs fails as expected for test_access()
ok 6 - Two valid inputs OK for test_access()
ok 7 - Two invalid inputs for test_access() fail as expected
Looks like you planned 3 tests but ran 7.

bad example 011

#!/usr/bin/perl
use warnings;
use strict;
use Test::More;
use Fobaccess;

my @good_array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate_input(@good_array),
 qr/Correct/, 'Exactly two inputs for validate_input() as expected.');

...

like(Fobaccess::test_access('not_a_fob', 'not_a_door'),
 qr/No/, 'Two invalid inputs for test_access() fail as expected');

done_testing;

$ perl Fobaccess.t
ok 1 - Two inputs expected for validate_input()
ok 2 - Less than two inputs fails as expected for validate_input()
ok 3 - More than two inputs fails as expected for validate_input()
ok 4 - Less than two inputs fails as expected for test_access()
ok 5 - More than two inputs fails as expected for test_access()
ok 6 - Two valid inputs OK for test_access()
ok 7 - Two invalid inputs for test_access() fail as expected
1..7

example 011

Program Features
• Program will take two CL args: door num, fob num.

• If not called with exactly two inputs, explain usage.

• If called with a valid door/fob combo, return "Access Allowed".

• If called with invalid door/fob combo, return "Access Denied".

• A "door" will include the building (A..Z), a floor (01..99), and
a door number (101..999).

• A "fob" is a 16-digit hex number.

tests for door validation (format: BFFDDD)
 sub validate_door_format()
 requires: exactly one input, the door to check

• Less than one input

• More than one input

• One input with more than 6 chars

• One input with less than 6 chars

• One input with bad (non-numeric) floor data

• One input with bad (non-numeric) door data

• At least one test of: One input with valid data

tests for door validation (format: 16 hex chars)
 sub validate_fob_format()
 requires: exactly one input, the fob to check

• Less than one input

• More than one input

• One input with more than 16 chars

• One input with less than 16 chars

• One input with bad (non-hex) data

• At least one test of: One input with valid data

like(Fobaccess::validate_door_format(), qr/Not enough inputs/,
 'Less than one input fails for validate_door_format() as expected');

like(Fobaccess::validate_door_format('two inputs', 'two inputs'), qr/Extra inputs/,
 'More than one input fails for validate_door_format() as expected');

like(Fobaccess::validate_door_format('A123'), qr/too few/,
 'Too few chars on input fails for validate_door_format() as expected');

like(Fobaccess::validate_door_format('0123456789ABCDEF'), qr/too many/,
 'Too many chars on input fails for validate_door_format() as expected');

like(Fobaccess::validate_door_format('A1234A'), qr/Not a door/,
 'Bad door chars on input fails for validate_door_format() as expected');

like(Fobaccess::validate_door_format('Ab1234'), qr/Not a door/,
 'Bad floor chars on input fails for validate_door_format() as expected');

like(Fobaccess::validate_door_format('A12345'), qr/Valid door/,
 'Good data works for validate_door_format() as expected');

like(Fobaccess::validate_door_format('Z98765'), qr/Valid door/,
 'Good data works for validate_door_format() as expected');

example 012

like(Fobaccess::validate_fob_format(), qr/Not enough inputs/,
 'Less than one input fails for validate_fob_format() as expected');

like(Fobaccess::validate_fob_format('two inputs', 'two inputs'), qr/Extra inputs/,
 'More than one input fails for validate_fob_format() as expected');

like(Fobaccess::validate_fob_format('0123456789ABCDEF0'), qr/Not a valid fob/,
 'Too many chars on input fails for validate_fob_format() as expected');

like(Fobaccess::validate_fob_format('0123456789ABCDE'), qr/Not a valid fob/,
 'Too few chars on input fails for validate_fob_format() as expected');

like(Fobaccess::validate_fob_format('Z123456789ABCDEF'), qr/non-hex/,
 'Bad (non-hex) data on input fails for validate_fob_format() as expected');

like(Fobaccess::validate_fob_format('0123456789ABCDEF'), qr/Valid fob/,
 'Good data works for validate_fob_format() as expected');

like(Fobaccess::validate_fob_format('ABCDEF0123456789'), qr/Valid fob/,
 'Good data works for validate_door_format() as expected');

example 012

sub validate_door_format {
 if (scalar @_ > 1) { return "Extra inputs to validate_door_format"; }
 elsif (scalar @_ < 1) { return "Not enough inputs to validate_door_format"; }
 my $input_door = shift;
 if (length $input_door > 6) { return "Not a valid door; too many chars"; }
 elsif (length $input_door < 6) { return "Not a valid door; too few chars"; }
 unless ($input_door =~ /^[a-z]\d{5}$/i)
 { return "Not a door; does not match BFFDDD"; }
 return "Valid door";
}

sub validate_fob_format {
 if (scalar @_ > 1) { return "Extra inputs to validate_fob_format"; }
 elsif (scalar @_ < 1) { return "Not enough inputs to validate_fob_format"; }
 my $input_fob = shift;
 if (length $input_fob > 16) { return "Not a valid fob; too many chars"; }
 elsif (length $input_fob < 16) { return "Not a valid fob; too few chars"; }
 unless ($input_fob =~ /^[\da-f]{16}$/i)
 { return "Not a fob; at least one non-hex char"; }
 return "Valid fob";
}

example 012

$ perl Fobaccess.t
ok 1 - Two inputs expected for validate_input()
ok 2 - One input fails as expected for validate_input()
ok 3 - Three inputs fail as expected for validate_input()
ok 4 - One input fails as expected for test_access()
ok 5 - One input fails as expected for test_access()
ok 6 - Two valid inputs OK for test_access()
ok 7 - Two invalid inputs for test_access() fail as expected
ok 8 - Less than one input fails for validate_door_format() as expected
ok 9 - More than one input fails for validate_door_format() as expected
ok 10 - Too few chars on input fails for validate_door_format() as expected
ok 11 - Too many chars on input fails for validate_door_format() as expected
ok 12 - Bad door chars on input fails for validate_door_format() as expected
ok 13 - Bad floor chars on input fails for validate_door_format() as expected
ok 14 - Good data works for validate_door_format() as expected
ok 15 - Good data works for validate_door_format() as expected
ok 16 - Less than one input fails for validate_fob_format() as expected
ok 17 - More than one input fails for validate_fob_format() as expected
ok 18 - Too few chars on input fails for validate_fob_format() as expected
ok 19 - Too many chars on input fails for validate_fob_format() as expected
ok 20 - Bad (non-hex) data on input fails for validate_fob_format() as expected
ok 21 - Good data works for validate_fob_format() as expected
ok 22 - Good data works for validate_door_format() as expected
1..22

example 012

Program Features
• Program will take two CL args: door num, fob num.

• If not called with exactly two inputs, explain usage.

• If called with a valid door/fob combo, return "Access Allowed".

• If called with invalid door/fob combo, return "Access Denied".

• A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

• A "fob" is a 16-digit hex number.

 1 #!/usr/bin/perl
 2 use warnings;
 3 use strict;
 4
 5 # UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
 6 if (scalar @ARGV != 2) {
 7 my $usage =<<"EOT";
 8 Usage: $0 DOORNUM FOBNUM
 9 DOORNUM is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. A1101)
 10 FOBNUM is 16 hex digits.
 11 EOT
 12 die "\n$usage\n";
 13 }
 14
 15 my $door_number = shift;
 16 my $fob_number = shift;
 17 print "Validating [$fob_number] has access to [$door_number]... ";
 18
 19 if (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1101'))
 20 { print "OK.\n"; }
 21 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1102'))
 22 { print "OK.\n"; }
 23 elsif (($fob_number eq '0123456789ABCDEF') && ($door_number eq 'A1103'))
 24 { print "OK.\n"; }
 25 else { print "ACCESS DENIED.\n"; }

example 001

#!/usr/bin/perl
use warnings;
use strict;
use Fobaccess;

my $return_value = Fobaccess::validate_input(@ARGV);
if ($return_value ne 'OK')
 { die $return_value; }

if (Fobaccess::test_access(@ARGV) eq 'Yes') {
 print "Access Allowed\n";
}
else {
 die "Access Denied\n";
}

$./fob_access.pl A01101 0123456789ABCDEF
Access Allowed
$./fob_access.pl A1 0123456789ABCDEF
Access Denied

example 012

sub validate_input {
 # UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
if (scalar @_ != 2) {
 my $usage =<<"EOT";
Usage: $0 DOORNUM FOBNUM
 DOORNUM is a number of format BFFDDD (BUILDING, FLOOR, NUMBER - e.g. A01101)
 FOBNUM is 16 hex digits.
EOT
 return $usage;
 }
 my $door_validation_result = validate_door_format($_[0]);
 if ($door_validation_result ne 'Valid door')
 { return $door_validation_result; }
 my $fob_validation_result = validate_fob_format($_[1]);
 if ($fob_validation_result ne 'Valid fob')
 { return $fob_validation_result; }
return 'OK';
}

$./fob_access.pl A01101 0123456789ABCDEF
Access Allowed
$./fob_access.pl A1 0123456789ABCDEF
Not a valid door; too few chars at ./fob_access.pl line 8.

example 013

$ perl Fobaccess.t
ok 1 - Two inputs expected for validate_input()
ok 2 - One input fails as expected for validate_input()
ok 3 - Three inputs fail as expected for validate_input()
ok 4 - One input fails as expected for test_access()
ok 5 - One input fails as expected for test_access()
ok 6 - Two valid inputs OK for test_access()
ok 7 - Two invalid inputs for test_access() fail as expected
ok 8 - Less than one input fails for validate_door_format() as expected
ok 9 - More than one input fails for validate_door_format() as expected
ok 10 - Too few chars on input fails for validate_door_format() as expected
ok 11 - Too many chars on input fails for validate_door_format() as expected
ok 12 - Bad door chars on input fails for validate_door_format() as expected
ok 13 - Bad floor chars on input fails for validate_door_format() as expected
ok 14 - Good data works for validate_door_format() as expected
ok 15 - Good data works for validate_door_format() as expected
ok 16 - Less than one input fails for validate_fob_format() as expected
ok 17 - More than one input fails for validate_fob_format() as expected
ok 18 - Too few chars on input fails for validate_fob_format() as expected
ok 19 - Too many chars on input fails for validate_fob_format() as expected
ok 20 - Bad (non-hex) data on input fails for validate_fob_format() as expected
ok 21 - Good data works for validate_fob_format() as expected
ok 22 - Good data works for validate_door_format() as expected
1..22

example 013

Program Features
• Program will take two CL args: door num, fob num.

• If not called with exactly two inputs, explain usage.

• If called with a valid door/fob combo, return "Access Allowed".

• If called with invalid door/fob combo, return "Access Denied".

• A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

• A "fob" is a 16-digit hex number.

What do I do next?

• Try to modify the code presented today; add tests and write the
code for a DB interface instead of if/else/elsif.

• Test::Tutorial - Lots of good documentation in there!

• Read up on using the prove command (and t/ directories).

• Search YouTube for other YAPC talks on testing.

