Ch. 20
Genes and Inheritance

How traits are passed from generation to generation

What are Genes?
- Each chromosome contains one very long DNA molecule
- Typically bears thousands of genes
- Genes carry our traits
- Genes are sections of DNA

What is heredity?
- Heredity – passing traits from parent to offspring
- The genes for certain traits are passed down in families from parents to children.
- For example,
 - parents with curly hair will have kids with curly hair
 - parents with short fingers will have kids with short fingers

Terms used in modern genetics
- Genes
 - Carry the instructions for making proteins
 - Each gene is found at a specific site on a chromosome
- Alleles
 - are different versions of a gene
 - Diploid cells (2n) have pairs of genes on homologous chromosomes

Genes carry our traits
- Genes
 - found at specific locations on a chromosome
- Alleles
 - are different versions of a gene

Genotype and phenotype
- Genotype – an individual’s genes
 - Allele “F” codes for freckles
- Phenotype – what an individual looks like
Genotype and phenotype

- What is her genotype?
- The gene for freckles has 2 alleles
 - The dominant allele = F
 - The recessive allele = f
- Chromosomes are found in pairs
- Possible genotypes:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>f</td>
</tr>
</tbody>
</table>

Examples of traits controlled by a single gene in humans

- These traits are determined by simple dominant-recessive inheritance
- Possible genotypes for someone with freckles?
- Without freckles?

Inheriting a trait

- If a man with short fingers marries a woman with long fingers, what genotypes and phenotypes will their children have?

<table>
<thead>
<tr>
<th>Dad</th>
<th>Mom</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dominant trait</th>
<th>Recessive trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF or Ff</td>
<td>ff</td>
</tr>
</tbody>
</table>

Forming the gametes

- Gametes carry only one allele for each trait.

<table>
<thead>
<tr>
<th>Dad</th>
<th>Mom</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype = FF</th>
</tr>
</thead>
</table>

Gametes are haploid — only carry one of each chromosome

Fertilization

- When sperm and egg unite at fertilization, each contributes its allele.

<table>
<thead>
<tr>
<th>Fertilized egg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype = Ff</td>
</tr>
</tbody>
</table>

Phenotype?
Forming the gametes

- What if dad is \(FF \)?

\[
\text{Dad} \quad F \quad f
\]

\[
\text{Genotype} = FF
\]

\[
\text{meiosis} \quad F \quad f \quad F \quad f
\]

Then after fertilization ...

\[
\text{Dad} \quad \text{Genotype} = Ff \quad \text{F or f} \quad \text{F or f}
\]

\[
\text{Mom} \quad \text{Genotype} = \text{f or f} \quad \text{All f}
\]

\[
\text{Gametes:} \quad F \quad f \quad \text{Fertlized egg: genotype? phenotype?} \quad F or ff
\]

1 gene → 1 trait

- If neither parent has freckles, what will be the genotype of their offspring?

\[
\text{Offspring} = \text{ff}
\]

Inheritance (more complicated)

- If both parents are heterozygous for freckles, what will be the genotype of their offspring?

\[
\text{Freckles} \quad F \quad f \quad \text{Freckles} \quad F \quad f
\]

\[
\text{Gametes?} \quad F \quad f \quad \text{Gametes?} \quad F \quad f
\]

Punnett square analysis

- Grid used to predict the genotypes of the offspring.
- Shows all possible combinations of egg and sperm!

\[
\begin{array}{|c|c|c|}
\hline
\text{Genotype? Gametes?} & 1 & 2 \\
\hline
\text{Mom} \quad Ff & F & f & F & f \\
\hline
\text{Dad} \quad Ff & F & f & F & f \\
\hline
\end{array}
\]

\[
\text{Punnett square analysis}
\]

What are the genotypes of the offspring of two heterozygous freckled parents (\(Ff \))?

\[
\begin{array}{|c|c|}
\hline
\text{Gametes?} & 1 & 2 \\
\hline
\text{Ff} & F & f \\
\hline
\text{ff} & f & f \\
\hline
\end{array}
\]

\[
\text{Ratio: 1FF, 2 Ff, 1 ff}
\]

\[
\text{What are the phenotypes?}
\]
Now it’s your turn

- Tim and Jan both have free earlobes but their son does not. Show with a Punnett square how this can happen.

Recessive disorders

- Most human genetic disorders are recessive.
- Albinism
 - lack of melanin pigment in the eyes, skin and hair
 - affects mammals (including humans), fish, birds, reptiles and amphibians

Imagine you are a genetic counselor

- Cystic fibrosis
 - Most common lethal genetic disease in US
 - Symptoms: excessive secretion of a very thick mucus which interferes with breathing
 - Symptoms usually appear shortly after birth.

- A man and a woman who have a family history of CF are thinking of having a child.
- Genetic analysis showed they are both carriers of the defective gene
- What would be your advice?
- What is the probability that their child will have CF?

Dominant Disorders

- Achondroplasia is a common form of dwarfism.
- Caused by a mutation in the FGFR3 gene on chromosome 4
 - abnormal bone and cartilage formation
 - Just need 1 copy of mutated gene

Huntington disease: a dominant genetic disorder

- Caused by mutations in the HTT gene.
- Every individual who carries the allele gets the disorder
- Fatal: causes progressive deterioration of the brain
- Late age of onset: most people do not know they are affected until they are more than 30 years old

Recessive disorders

- Albino alligator
 - Genotype = mm

- Albinism
 - lack of melanin pigment in the eyes, skin and hair
 - affects mammals (including humans), fish, birds, reptiles and amphibians

- Most common lethal genetic disease in US
- Symptoms: excessive secretion of a very thick mucus which interferes with breathing
- Symptoms usually appear shortly after birth.
- A man and a woman who have a family history of CF are thinking of having a child.
- Genetic analysis showed they are both carriers of the defective gene
- What would be your advice?
- What is the probability that their child will have CF?

- Achondroplasia is a common form of dwarfism.
- Caused by a mutation in the FGFR3 gene on chromosome 4
 - abnormal bone and cartilage formation
 - Just need 1 copy of mutated gene

- Huntington disease: a dominant genetic disorder
 - Caused by mutations in the HTT gene.
 - Every individual who carries the allele gets the disorder
 - Fatal: causes progressive deterioration of the brain
 - Late age of onset: most people do not know they are affected until they are more than 30 years old
Beyond simple inheritance

Most traits involve multiple genes

Skin color is determined by several genes

Incomplete Dominance

- The dominant allele codes for protein “H”
- A single dose of the protein gives an intermediate result

Incomplete Dominance

- Curly hair: hh
- Wavy hair: Hh
- Straight hair: HH

Multiple Alleles:

ABO blood groups

- Three alleles for the same gene
 - \(I^A \): Carbohydrate A on RBC
 - \(I^B \): Carbohydrate B on RBC
 - \(i \): neither A or B
- The \(I^A \) and \(I^B \) alleles exhibit codominance.
- Both alleles are expressed in the heterozygote.

Blood types and paternity tests

- A paternity suit is filed by a woman with Type O blood.
- The man accused of being the father has Type A blood.
- The child is type O.
- Could the man be the father? If he is, what must be his genotype?

Pleiotropy

- When a single gene has more than 1 effect

Marfan syndrome— an example of pleiotropy

- A mutation in the \(FBN1 \) gene
- Connective tissue defects
- Disproportionately long hands, a weak aorta, caved in breastbone, and other symptoms
Most traits are controlled by multiple genes

- At least 180 genes control how tall a person will grow

Some disorders are controlled by genes on the X chromosome

- Sex-linked inheritance involves genes located on a sex chromosome
 - Most are on the X chromosome.
 - X chromosomes contain nearly 2000 genes
 - Y chromosomes contain only 80 genes
 - Whether you’re male or female affects the pattern of inheritance
 - Why?

Red-green colorblindness

- X-linked disorder
 - due to a recessive allele on the X chromosome
- Red-green color blindness
 - The light-sensitive cells in the eyes don’t function properly.
 - Mostly found in males
 - Prevalence: 5-10% of males

A test for red-green colorblindness

Inheriting colorblindness

- A man with normal vision and a woman carrier have children. What is the chance that the couple will have a color-blind daughter? A color-blind son?
 - Man’s genotype
 - Man’s gametes
 - Woman’s genotype
 - Woman’s gametes

Sex-Linked Disorders

- Male pattern baldness
 - Largely sex-linked, but other genes are also involved
 - Gene is on the X chromosome
 - Passed from mother to son
 - Because the allele is recessive, a female needs two X chromosomes with the defect to show typical male pattern baldness

Inheriting baldness

- What is the chance that their sons will be bald?
 - What genotypes are possible for their daughters? Phenotypes?