Bio40C schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Tu</th>
<th>Th</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ch 24 Digestion</td>
<td>Ch 25 Metabolism</td>
<td>Ex.38 GI system</td>
</tr>
<tr>
<td>3</td>
<td>Ch 25 Nutrition</td>
<td>Exam 1 Ch 24 & 25</td>
<td>Diet analysis Review</td>
</tr>
<tr>
<td>4</td>
<td>Ch 26 Urinary sys</td>
<td>Ch 26 Urinary sys</td>
<td>Quiz 1 Labs 1-3</td>
</tr>
</tbody>
</table>

Lecture Exam 1
- Covers Ch 24 and 25 – digestion and metabolism
- Multiple choice and short answer
- 100 pts
- Bring scantron and #2 pencil
- Review sheets on my website

Lab quiz 1
- 50 pts
- Covers labs 1-3 (digestive tract)
 - Identify anatomical structures on models
 - listed on “scavenger hunt” and in lab ppt
 - A “spelling list” of structures will be provided
 - Questions based on Ex38 review sheet
 - These will focus on function
 - Take home question: Case study 2 (5 pts)

MALT and GALT
- MALT (mucosa-associated lymphatic tissue)
 - Diffuse system of small concentrations of lymphoid tissue (contain immune system cells)
 - Present all along the GI tract, especially in the tonsils, small intestine, appendix and large intestine (p.924)
- GALT (gut-associated lymphatic tissue)
 - Subdivision of MALT, includes the Peyer’s patches in the small intestine

Chapter 25: Metabolism and Nutrition

Cellular respiration

How cells make ATP by catabolizing food
How cells produce ATP

- Cells use oxygen to harvest the chemical energy of food molecules.
- In a series of chemical reactions called cellular respiration, cells convert organic molecules to ATP.
- Cells use ATP (chemical energy) to do work.

The Overall Equation for Cellular Respiration

- Glucose is a common fuel molecule for cellular respiration.

\[
\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{Energy}
\]

Carbohydrate metabolism

- The fate of glucose depends on the needs of body cells.
 - Glucose →
 - ATP production → cellular work
 - Amino acid synthesis → proteins
 - Glycogen synthesis → store glucose
 - Triglyceride synthesis → store energy

How does glucose get into cells?

- GluT transporters in the plasma membrane bring glucose into the cell.
- Insulin increases insertion of these transporters into the plasma membrane, increasing rate of glucose entry into cells.
- Phosphorylation traps glucose in cells.
- Glucose can be metabolized by glycolysis to produce ATP.

An overview of cellular respiration

- Cells break down glucose and capture the released energy as ATP.
 - 3 steps:
 1. Glycolysis
 - occurs in the cytoplasm
 - Produces ATP
 2. Krebs cycle
 - occurs in mitochondria
 - Produces ATP
 3. Electron transport
 - occurs in mitochondria
 - Generates most ATP

Glucose catabolism

- Glucose oxidation is also called cellular respiration.
- It occurs in every cell of the body (except red blood cells, which lack mitochondria).
- Provides the cell’s chief source of energy.
Cellular respiration begins with Glycolysis

- Glucose (6-carbon) is split into 2 molecules of pyruvic acid (3-carbon)
- Metabolic pathway consumes 2 ATP but generates 4 ATP
- Occurs in the cytoplasm
- Anaerobic – do not require oxygen
- Fate of pyruvic acid depends on oxygen availability
 - If oxygen is scarce (anaerobic), it’s converted to lactic acid
 - If oxygen is plentiful (aerobic), cells convert pyruvic acid to acetyl coenzyme A

The 10 reactions of glycolysis

- Pyruvic acid links glycolysis (in the cytoplasm) with the Krebs cycle (in the mitochondria)
- If oxygen is plentiful (aerobic conditions), pyruvic acid enters the mitochondria, is converted to acetyl coenzyme A, a two-carbon compound, and then enters the Krebs cycle

The Krebs cycle

- Occurs in the mitochondria
- Series of 8 reactions
- Generate 1 ATP molecule by substrate-level phosphorylation
- 2 reactions release CO$_2$
- Exhaled in the lungs
- The most important outcome: the energy originally in glucose is in the reduced coenzymes NADH and FADH$_2$
- Transfer energy to the electron transport chain

Electron transport chain

- Electron transport
 - Series of electron carriers in inner mitochondrial membrane
 - Carry out a series of oxidation-reduction reactions
 - As electrons are passed through the chain, there is a stepwise release of energy for the generation of ATP
 - Final electron acceptor is molecular oxygen (O$_2$)
Electron transport chain

- Hydrogen ion movement
 - Carriers also move protons (H^+) from the matrix into the space between the inner and outer mitochondrial membranes
 - Creates H^+ concentration gradient and an electrical gradient

- ATP production
 - Protons flow back into the matrix through the H^+ channel in ATP synthase
 - ATP synthase uses the energy to synthesize ATP
 - Called chemiosmosis

- Recap: cellular respiration
 - Glycolysis
 - occurs in the cytoplasm
 - does not require oxygen
 - anaerobic
 - generates ATP and NADH
 - Krebs cycle
 - occurs in mitochondria
 - requires oxygen
 - aerobic
 - generates ATP, NADH and FADH$_2$
 - Electron transport
 - occurs in inner membrane
 - requires oxygen
 - Generates most of the ATP

Electron transport chain

Adding up the ATP from cell respiration

- In the process of cellular respiration, the glucose molecule is entirely consumed
- the energy from its chemical bonds is transformed into high-energy molecules
- 4 ATP molecules
- 10 NADH electron carriers
- 2 FADH$_2$ electron carriers

Glucose metabolism

- Most glucose is catabolized to generate ATP
- Synthesis of glycogen: glycogenesis
 - Glucose is stored as glycogen, the only stored carbohydrate in humans
 - Glycogen is stored in liver and skeletal muscle
 - Glycogenesis occurs in the liver and is stimulated by insulin
- Glycogen breakdown: glycogenolysis
 - Glycogen stored in liver is broken down into glucose and released into blood
 - Occurs between meals

Some of the deadliest poisons disrupt electron transport

- Both carbon monoxide and cyanide kill by blocking the transfer of electrons to oxygen and disrupting ATP synthesis.
Glycogenolysis and Glycogenesis

Glucose can be synthesized from fats and proteins
- Glycerol (part of triglycerides), lactic acid, and many amino acids can be converted into glucose by the liver
- **Gluconeogenesis**
 - "Newly formed" glucose
 - Stimulated by cortisol and glucagon

Lipid metabolism:
- **Transport of lipids by lipoproteins**
 - Most lipids are hydrophobic
 - To be transported in blood, lipids are made more water-soluble by combining with proteins
 - **Lipoproteins**
 - Lipid transport vehicles
 - Outer layer of proteins, phospholipids, cholesterol
 - Core of lipids
 - Proteins in outer shell called apoproteins (apo A, apo B, etc)
 - Help solubilize the lipoprotein
 - Each has specific functions

Lipoproteins – lipid transport vehicles

- Categorized according to density
- 4 major classes of lipoproteins:
 - **Chylomicrons**
 - Form in small intestinal mucosal cells
 - Transport dietary lipids to adipose tissue
 - **Very low-density lipoproteins (VLDLs)**
 - Form in hepatocytes
 - Transport endogenous lipids to adipocytes
 - **Low-density lipoproteins (LDLs)** – "bad" cholesterol
 - Carry 75% of total cholesterol in blood
 - Deliver it to cells throughout the body
 - When present in excess, deposit cholesterol in artery wall → fatty plaques
 - **High-density lipoproteins (HDLs)** – "good" cholesterol
 - Remove excess cholesterol from body cells
 - Deliver cholesterol to liver for elimination

Plaque buildup in arteries
- Excess LDLs deposit cholesterol around smooth muscle fibers in arteries → fatty plaques
- Increases the risk of coronary artery disease
- A heart attack or stroke occurs when an area of plaque (atherosclerosis) ruptures and a clot forms at the site, blocking the flow of blood to the tissue

Lipid Metabolism: cholesterol

- 2 sources of cholesterol
 - Foods
 - Most is synthesized by liver
- Normal level of total cholesterol
 - <200 mg/dl
- As total blood cholesterol increases, risk of coronary artery disease begins to rise
 - Treated with exercise, low fat diet
 - Drugs
 - Promote excretion of bile in the feces
 - Block cholesterol synthesis
Lipid metabolism and storage

- Dietary fat is absorbed in GI tract as chylomicrons
- Part is metabolized to provide ATP
- The rest enters the liver and adipose tissue for storage
- Triglycerides in adipose tissue constitute 98% of all body energy reserves
- Adipose tissue supplies energy to skeletal & heart muscle
- The liver is an important site for energy conversion, exchanging energy sources from one form to another
 - Glycogen → glucose
 - Glucose → lipids
 - Amino acids → lipids

Lipids can be

- Oxidized to produce ATP
- Stored in adipose tissue
- Used as structural molecules
 - Phospholipids of plasma membranes
 - Lipoproteins that transport cholesterol
 - Thromboplastin for blood clotting
- Cholesterol is used to synthesize bile salts and steroid hormones

Triglyceride storage

- Triglycerides are stored in adipose tissue, mostly in the subcutaneous layer.
- Fats in adipose tissue are not inert.
- They are catabolized and mobilized constantly throughout the body

Lipid synthesis: lipogenesis

- Lipid synthesis (lipogenesis)
 - Occurs when more calories are consumed than needed for ATP production
 - Liver cells and adipose cells can convert glucose or amino acids into lipids

Lipid catabolism: lipolysis

- Muscle, liver and adipose tissue can breakdown lipids to form ATP
- Triglycerides are split into glycerol and fatty acids

Lipid catabolism (lipolysis)

- Glycerol and fatty acids: two different catabolic pathways
 - Glycerol → pyruvic acid enters the Krebs cycle
 - Fatty acids → β oxidation to Acetyl CoA → Krebs cycle
- In β oxidation, carbon atoms are removed in pairs from fatty acid chains. The resulting molecules of acetyl coenzyme A enter the Krebs cycle.
Energy interconversion

- Excess carbohydrates, proteins, and fats all have the same fate: they are converted into lipids.
- Liver and adipose cells synthesize lipids from glucose or amino acids.
- Lipogenesis
- Liver cells form ketone bodies as a normal part of fatty acid catabolism.
- Ketone breakdown occurs in most body cells.

Ketosis

- Liver converts lipids into fatty acids and ketone bodies.
- Level of ketone bodies in blood is normally very low because other tissues use them for ATP production.
- When few carbs are available for catabolism (in fasting or starvation), concentration of ketone bodies in blood rises above normal – a condition called ketosis.
- Most ketone bodies are acids and must be buffered.
- Prolonged ketosis can lead to acidosis.

Test your understanding

- Which type of lipoprotein delivers cholesterol to body cells?
 - Chylomicron
 - VLDL
 - LDL
 - HDL

Question 2

- Name the 3 pathways (series of reactions) that produce ATP during the complete oxidation of glucose.
- What is gluconeogenesis and why is it important?

Protein metabolism

- Dietary protein
 - Amino acids
 - Excess aa are converted into glucose (gluconeogenesis), triglycerides (lipogenesis).
 - New proteins for growth & tissue repair.
 - Oxidized to produce ATP.

Protein catabolism

- Proteins from worn out cells are broken down into amino acids.
- Before entering Krebs cycle the amino group must be removed – deamination.
- Produces ammonia, NH₃.
- Liver cells convert NH₃ to urea, excreted in urine.
Protein synthesis

- Carried out in almost every cell in the body
- 20 amino acids in the human body
 - Nonessential amino acids can be synthesized in the body by transamination
 - Transfer of amino group from an amino acid to a keto acid
 - 10 are “essential” amino acids
 - Must be present in the diet because body can’t synthesize them in adequate amounts

Key molecules in metabolism

- 3 molecules play key roles in metabolism
 - Glucose-6-phosphate
 - Pyruvic acid
 - Acetyl CoA
 - Stand at metabolic crossroads

Key molecules in metabolism

- Glucose-6-phosphate (G-6-P)
 - Made shortly after glucose enters body cell
 - 4 fates
 - Synthesis of glycogen
 - Conversion to pyruvate via glycolysis
 - Make ribose-5-phosphate for synthesis of RNA and DNA
 - Release of glucose into bloodstream

Key molecules in metabolism

- Acetyl Coenzyme A
 - Acetyl CoA is the entry into the Krebs cycle
 - When ATP is low and oxygen plentiful, most pyruvic acid goes to ATP production via Acetyl CoA
 - Can also be used to synthesize fatty acids, ketone bodies, and cholesterol

Metabolic adaptations

- Your metabolism depends on how recently you have eaten
 - Absorptive state
 - Ingested nutrients are entering the blood stream
 - Glucose readily available for ATP production
 - Post-absorptive state
 - Absorption of nutrients from GI tract is complete
 - Energy needs must be met by stored fuels
 - Maintaining steady blood glucose critical
 - Nervous system and red blood cells depend on glucose
Metabolism during the absorptive state

- Soon after a meal, nutrients enter blood
- Glucose, amino acids, and triglycerides in chylomicrons
- 2 metabolic hallmarks
 - Most body cells produce ATP by oxidizing glucose
 - Storage of excess fuel molecules in
 - Liver: glucose converted to glycogen, triglycerides
 - Liver: amino acids converted to carbohydrates, fats and proteins
 - Adipose tissue: dietary lipids are stored
 - Skeletal muscle cells: store glycogen

Absorbed glucose
- 50% → ATP via cellular respiration
- 40% is converted to triglycerides
- 10% is stored as glycogen

Dietary lipids
- Most are stored in adipose tissue
- Triglycerides synthesized in liver are packaged into VLDLs and transported to adipose tissue for storage

Metabolism during the absorptive state

- Absorbed amino acids
 - In liver, most amino acids enter the Krebs cycle → ATP
 - Some amino acids used for protein synthesis (e.g. plasma proteins)
 - In muscle and other tissues, amino acids used for protein synthesis

Metabolism during the absorptive state

- Absorbed amino acids
 - In liver, most amino acids enter the Krebs cycle → ATP
 - Some amino acids used for protein synthesis (e.g. plasma proteins)
 - In muscle and other tissues, amino acids used for protein synthesis

Regulation of metabolism – absorptive state

- Pancreatic beta cells release insulin
 - Promotes entry of glucose and amino acids into cells
 - Stimulates protein synthesis
 - Enhances triglyceride synthesis in liver and adipose tissue

Metabolism during the absorptive state

- Absorbed glucose
 - 50% → ATP via cellular respiration
 - 40% is converted to triglycerides
 - 10% is stored as glycogen

- Dietary lipids
 - Most are stored in adipose tissue
 - Triglycerides synthesized in liver are packaged into VLDLs and transported to adipose tissue for storage

Metabolism during the post-absorptive state

- About 4 hours after the last meal absorption in small intestine nearly complete
- Blood glucose levels start to fall
- Main metabolic challenge: maintain normal blood glucose levels
 - Glucose production
 - Breakdown of liver glycogen, lipolysis, gluconeogenesis using lactic acid and/or amino acids
 - Glucose conservation
 - Oxidizing fatty acids and other fuel molecules → ATP

Metabolism during the absorptive state

- Absorbed amino acids
 - In liver, most amino acids enter the Krebs cycle → ATP
 - Some amino acids used for protein synthesis (e.g. plasma proteins)
 - In muscle and other tissues, amino acids used for protein synthesis

Regulation of metabolism – absorptive state

- Pancreatic beta cells release insulin
 - Promotes entry of glucose and amino acids into cells
 - Stimulates protein synthesis
 - Enhances triglyceride synthesis in liver and adipose tissue

Metabolism during the absorptive state

- Absorbed glucose
 - 50% → ATP via cellular respiration
 - 40% is converted to triglycerides
 - 10% is stored as glycogen

- Dietary lipids
 - Most are stored in adipose tissue
 - Triglycerides synthesized in liver are packaged into VLDLs and transported to adipose tissue for storage

Metabolism during the absorptive state

- Absorbed amino acids
 - In liver, most amino acids enter the Krebs cycle → ATP
 - Some amino acids used for protein synthesis (e.g. plasma proteins)
 - In muscle and other tissues, amino acids used for protein synthesis

Regulation of metabolism – absorptive state

- Pancreatic beta cells release insulin
 - Promotes entry of glucose and amino acids into cells
 - Stimulates protein synthesis
 - Enhances triglyceride synthesis in liver and adipose tissue

Metabolism during the absorptive state

- Absorbed glucose
 - 50% → ATP via cellular respiration
 - 40% is converted to triglycerides
 - 10% is stored as glycogen

- Dietary lipids
 - Most are stored in adipose tissue
 - Triglycerides synthesized in liver are packaged into VLDLs and transported to adipose tissue for storage

Metabolism during the post-absorptive state

- About 4 hours after the last meal absorption in small intestine nearly complete
- Blood glucose levels start to fall
- Main metabolic challenge: maintain normal blood glucose levels
 - Glucose production
 - Breakdown of liver glycogen, lipolysis, gluconeogenesis using lactic acid and/or amino acids
 - Glucose conservation
 - Oxidizing fatty acids and other fuel molecules → ATP
Homeostasis of blood glucose concentration

- Especially important for the nervous system and red blood cells
- Nervous system
 - Uses glucose for ATP production because fatty acids can’t pass the blood-brain barrier
- Red blood cells
 - Derive all of their ATP from glycolysis of glucose because they lack mitochondria and thus lack the Krebs cycle and electron transport chain

Post-absorptive state: reactions that produce glucose

1. Breakdown of liver glycogen
2. Lipolysis: breakdown of triglycerides in adipose tissue → glycerol → glucose
3. Gluconeogenesis using lactic acid
4. Gluconeogenesis using amino acids

Postabsorptive state: producing ATP without glucose

- Oxidation of fatty acids via Krebs cycle and electron transport
 - Most cells
- Oxidation of lactic acid
 - Heart muscle
- Oxidation of amino acids
 - Hepatocytes
- Oxidation of ketone bodies
 - Hepatocytes
- Breakdown of muscle glycogen
 - Skeletal muscle

Regulation of metabolism – postabsorptive state

- As blood glucose declines, pancreas secretes glucagon
 - Glucagon increases release of glucose into blood by stimulating gluconeogenesis and glycogenolysis
- Sympathetic division of ANS releases norepinephrine and adrenal medulla releases epinephrine and norepinephrine
 - Stimulate lipolysis, glycogen breakdown

Test your understanding: Metabolism during starvation

- People can survive without food for 2 months if they drink enough water to prevent dehydration
- Glycogen stores are depleted within a few hours
- Where does the energy needed for survival come from?

When food is scarce, body protein and body fat are used to produce energy
Body Temperature Homeostasis

How do we maintain a constant core temp near 37°C?

Body temperature homeostasis

- Despite wide fluctuations in environmental temperatures, homeostatic mechanisms maintain normal range for internal body temperature
- Core temperature (37°C or 98.6°F) versus shell temperature (1-6°C lower)
- Heat produced by exercise, some hormones, sympathetic nervous system, fever, ingestion of food, younger age, etc.

Energy is lost as heat

- Heat released during cellular respiration is used to maintain our body temperature

What is BMR?

- Basal metabolism (BMR) - energy used to maintain the body’s basal or resting functions
- Breathing, blood circulation, maintaining body temp, etc
- Energy needed to digest and absorb food
- Energy used for physical activity

Factors affecting BMR

- Gender
- Lean body mass
- Height
- Age
- Thyroid hormone levels
- Stress, fever, illness
- Pregnancy and lactation

Thermoregulation

- If core temperature declines
 - Skin blood vessels constrict
 - Release of thyroid hormones, epinephrine and norepinephrine increases cellular metabolism
 - Shivering
- If core body temperature too high
 - Dilation of skin blood vessels
 - Decrease metabolic rate
 - Stimulate sweat glands