Peterson

Math 1A

Content -	Limits and Continuity, Derivatives and their application, Extrema of functions of 1 variable, and Antiderivatives
Prerequisite	Math 49B or equivalent (Preferably with grade of C or better)
Text -	Calculus, Early Transcendentals (8th edition), Stewart
Exams -	There are a total of 600 points available. Three 100 point midterm exams, one 200 point final exam, and an unspecified number of quizzes worth a total of 100 points.
Homework	Homework will be assigned every day but will not be collected. The quizzes will be based upon the homework that I assign as well as in class material. The homework I assign is the minimum work that can be done and I strongly suggest that students do more problems than are assigned.
Attendance -	Attendance in class is crucial to learning the material. If anyone misses more than two classes without informing me first, they will be dropped from the class. If anyone misses one class during the first week without informing me first, they also will be dropped. If you know you are not going to be in class, call (408) 742-8828 and leave a message. Please do not call the division office or the administration office.
Office Hours -	I will have assigned office hours on Tuesdays from 3 to 4 in S43 (math lab). Also,

if your phone goes off during class, I will ask you to leave. If it happens a second time, you will be dropped from the class.

Date	Section(s)
01/09/18	Introduction to limits. Definition of limit
01/11/18	Theorems on limits. One sided limits
01/16/18	Limits of Tria Functions. Limits involving infinity
01/18/18	Continuity, Applications of limits
01/23/18	Derivatives. Derivatives as a function
01/25/18	Review
01/30/18	Exam 1
02/01/18	Theorems on Derivatives
02/06/18	Product/ Quotient Rule, Derivatives of Trig functions
02/08/18	Increments and Differentials, Chain Rule
02/13/18	Chain Rule, Implicit Differentiation
02/15/18	Derivatives of logarithmic and other functions
02/20/18	Newton's Method
02/22/18	Exam 2
02/27/18	Related Rates
03/01/18	Extrema of Functions, Rolle's and Mean Value Thms
03/06/18	First Derivative Test, Second Derivative Test
03/08/18	Second Derivative Test, Concavity
03/13/18	Indeterminate Forms, L'Hopital's Rule
03/15/18	Optimization Problems
03/20/18	Exam 3
03/22/18	Antiderivatives
03/29/18	Final Exam

Grade Scale:

85%+	Α
70-84%	В
55-69%	С
45-54%	D
<45%	F

• **Student Learning Outcome**: Analyze and synthesize the concepts of limits, continuity, and differentiation from a graphical, numerical, analytical and verbal approach, using correct notation and mathematical precision.

• **Student Learning Outcome**: Evaluate the behavior of graphs in the context of limits, continuity and differentiability.

• **Student Learning Outcome**: Recognize, diagnose, and decide on the appropriate method for solving applied real world problems in optimization, related rates and numerical approximation.