CRN (27946) Math 1C-51Z Calculus

Instructor: Bijan Sadeghi

Asynchronous

Office Hours: Email me on Canvas

Textbook: Calculus: Early Transcendental; 9th ed., by James Stewart.

Your textbook should include a Webassign access code. If not, you must purchase one

Academic Term: Fall 2023

E-Mail: sadeghibijan@fhda.edu

separately.

Prerequisite: Math 1A & 1B or equivalent (with a grade of C or better).

The basic content of this course covers Parametric Equations & Polar Coordinates; Infinite Sequences & Series; Vectors & the Geometry of Space; Vector–Valued Functions. Two of the chapters (Parametric & Vectors) are virtually all algebra, but there is some calculus related to area and arc-length. Sequences/Series is the essential theory of understanding how a calculator/computer computes virtually all the various mathematical functions (logarithms, trig, etc.). Your knowledge of limits is very crucial to this lengthy chapter. Vector-Valued Functions does indeed bring us back to derivatives and integrals.

Keep in mind: many colleges on a semester system have two semesters of calculus to make up a full year of calculus, whereas those schools (De Anza/Foothill, others) on a quarter system use three quarters to make a full year of calculus. Guideline: wherever you begin your calculus sequence is where you should finish that sequence. Transferring between semester and quarter systems during the calculus sequence can create problems of missed material /information.

Attendance: Not required.

Cheating: Cheating is forbidden. There shall be no talking to, or unauthorized helping of other students, or copying from or looking at another student's paper during exams. A class/course grade of "F" will be given for any of the above infractions.

Homework: All the homework will be done online. Once you have your webassign access code, go to www.webassign.net, log-in and register, and enter Class Code:

deanza 0734 7427

Quizzes: There will be weekly quizzes held on Wednesday; time TBD.

Exams: Two exams will be given during the quarter. No Make Ups.

Final Exam: A two-hour comprehensive final exam will be given on Wednesday,

December 13th, 2023; time TBD. This exam is a must. A grade of "F" will be assigned to

those who miss the final exam.

September - October	Sep. 25th - Ch. 10	Sep. 27th - Ch. 10	Oct. 2nd - Ch.10	Oct. 4th - Ch. 10
October	9th - Ch. 11	11th - Ch. 11	16th - Exam 1	18th - Ch. 11
October - November	Oct. 23rd - Ch. 11	Oct. 25th - Ch. 11	Oct. 30th - Ch.	Nov. 1st - Ch. 11
November	6th - Ch. 11	8th Ch. 11	13th - Exam 2	15th - Ch. 12
November	20th - Ch. 12	22nd - Ch. 12	27th- Ch. 12	29th - Ch. 13
December	4th - Ch. 13	6th - Ch. 13	11th - Ch. 13	13th - Final Exam

Grading:

Homework 200 points Exams (2) 200 points Quizzes 100 points Final Exam 200 points

Total 700 points

Percentage	Grade	
[95-100]	"A+"	
[90-95)	"A"	
[88-90)	"A-"	
[85-88)	"B+"	

[80-85)	"B"
[77-80)	"B-"
[72-77)	"C+"
[65-72)	"C"
[61-65)	"D+"
[57-61)	"D"
[55-57)	"D-"
[0-55)	"F"

Important dates:

Last day to add/drop classes: For deadlines to drop with a refund and without and with a "W" grade, go to MyPortal > Students Tab > My Courses> View your Class Schedule. Dates are enforced.

Student Learning Outcome(s):

- Analyze infinite sequences and series from the perspective of convergence, using correct notation and mathematical precision.
- Apply infinite sequences and series in approximating functions.
- Synthesize and apply vectors, polar coordinate system and parametric representations in solving problems in analytic geometry, including motion in space.

Office Hours:

In-Person	MLC113	T,TH	1:00 PM	1:30 PM
In-Person	in-person	T,TH	3:45 PM	4:00 PM
Email, Canvas		M,W	7:30 AM	7:00 PM