De Anza ES 69 Energy Reliability

Establishing an Energy Action Plan

Scott Gould
Instructor

Stanford University

◆ Large Diverse Facility
 >> Research Labs, Classrooms, Residences, Office space, Athletic Facilities, Hospital
 >> 50 MW Cogen Plant – Central Steam and Chilled Water Production
 >> Several Buildings over $2 million/year (Med School and Clean Room Facility)

Elements of An Energy Plan

◆ All Elements Related
◆ Develop Consensus Early
◆ Consider Business “Culture”
◆ Establish Goals
◆ Benefits:
 >> Economic
 >> Environmental
 >> “Good Corporate Citizen”
Elements continued

- Partnership
- Education/Awareness
- Scheduling
- Maintenance
- Resourceful Design
- Capital Improvement
- Energy Retrofits
- Measurement

Partnership/Support

- Support from Upper Management
- Training and Support for Field Staff
- Projects Goals Communicated

Education/Awareness

- Training
- Audits
- Energy Balance
- Monthly Reports or Statements
- New Student/Employee Orientation
- Share Successes
Aggressive Scheduling

- "No Savings like off"
- Central Energy Management Systems
- Local Time Clocks

Vigorous Maintenance

- No Cost - Low Cost
- Preventive Maintenance
 - Filters, Fan Belts, Valves, Strainers
- Optimization
- Feedback
- Energy Projects with Maintenance Benefit

Resourceful Design

- Get it right the first time
- Design team on board early
- Specifications or Guidelines
- Competing First Costs
- Building Envelope
- Plans Review
Capital Improvement

- Infrastructure
 - Physical Plant
 - Outdoor Lighting
- Energy Production
 - Alternative Energy Sources
- Procurement
 - Energy Star Products

Energy Retrofits

- Building Specific and Generic Approach
- Reduce Waste and Improve performance
- Lighting Conversions
- Lighting Controls

Energy Retrofit Program (ERP)

- Modeled After Utility Rebate Programs
 - Departments Apply for Funding
 - Projects ranked on Cost Benefit ratio
- Advantages
 - Consistency with Products and Vendors
 - Special need of departments considered
- Help from Vendors
Non-stop Measurement

- Metering
 - Monthly
 - Real time
 - Trends
- Accounting/database
 - Patterns
 - Anomalies
- Justify Energy Programs

Sustainability

- Site Design and Planning
- Energy Use
- Water Management
- Materials and Resources
- Indoor Environmental Quality

“At Stanford, sustainability is to be considered at the same level as traditional competing priorities such as cost, quality, and schedule.”

http://cpm.stanford.edu/pdp.html
Guidelines for Sustainable Buildings 2002
Review Elements of Energy Action Plan

- Partnership
- Education/Awareness
- Scheduling
- Maintenance
- Resourceful Design
- Capital Improvement
- Energy Retrofits
- Measurement

Overview of Energy Economics

In Brief
- What are economic analyses?
- Types of economic analyses
- Reviewing assumptions
- Simple Payback
- Lifecycle cost

What are Economic Analyses?

- Decision Making Tools for Energy Projects
- Does not include non-economic benefits
 - Environment
 - Society
 - "Good Neighbor"
Types of Economic Analyses

- Rough order of Magnitude Estimates
- Simple Payback
- Internal Rate of Return
- Used on Both New Building Projects and Retrofits
 - Glazing, HVAC, Chiller & Boiler Selection

Assumptions are Key!

- First Cost
- Cost of Energy (Tariff rate)
- Cost of Labor
- Cost of Materials
- Cost of Maintenance
- Cost of Money, tax credits
- Inflation

Simple Payback

- Simple payback = Cost/Savings
- Measures how long it will take to recover a cost-saving investment
- Does not account for cost of money or length of project
<table>
<thead>
<tr>
<th>Life Cycle Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Total cost of owning, operating, and maintaining a system over its useful life.</td>
</tr>
<tr>
<td>- Costs are adjusted for time value of money.</td>
</tr>
<tr>
<td>- Alternative with the lowest life cycle cost is the best.</td>
</tr>
</tbody>
</table>