lab lecture #3 (9/29/15)
- covalent compounds / mixture
- Expt A2: naming compounds
 - inorganic compounds
 - ionic inorganic compound
 - binary ionic
 - compounds with polyatomic ions
 - hydrates
 - acids
 - inorganic covalent compounds
 - binary covalent
 - organic compounds
- break
- Expt A1
 - notes
 - sample calculation
 - explain lab report due on thurs
 - make up data / learn how to graph.

- crucible
- test tube
Covalent compounds:
- Atoms share electrons
- Usually between non-metal + non-metal

Ex.
H₂
H••H → H₂+H₂

H₂O

Hydrogen chloride

Mixture vs. Compound?
Mixture: mix of substance
→ No bonds formed between them (ionic or covalent)
→ Can be separated.

Ionic compounds are not molecules.

Molecule is basic unit that you can separate with physical boundary

Formula unit.
Compounds also classified as:

- Organic compounds (carbon)
 - H₂O, N, S, P
 - Mostly covalent compounds.

- Inorganic compounds (chemicals w/o C)
 - Ionic compound
 - Mostly A₂
 - Covalent compound

Inorganic compounds:

1. Ionic
 - Binary ionic compound
 - Made from 2 elements.
 - NaCl → Sodium chloride.

- Name cation 1st, write out full name.
- Name anion 2nd.
 - Change the last letter of elements name to "ide!"
ex. Nitrogen – nitride
Oxygen – oxide
Sulfur – sulfide
Selenium – selenide
Fluorine – fluoride
Chlorine – chloride
Bromine – bromide
Iodine – iodide
Astatine – astatide

NaCl Sodium chloride
CaF₂ Calcium fluoride

→ ionic compound — don't include #

FeCl₃ Iron (III) chloride
PbO₂ Lead (IV) oxide

2) Ionic compounds with polyatomic ion.

Covalent molecule that carries a net +/− charge.

\[\text{Na}_2\text{CO}_3 \]
\[\text{Na} \leftrightarrow \text{CO}_3^{2−} \]

1) Common polyatomic cation.

ammonium \((\text{NH}_4^+) \)
Mercury (I) \((\text{Hg}_2^{2+}) \)
(5) Common polyatomic anions.

1. Not oxoanion (does not have O).
 - CN⁻ cyanide
 - SCN⁻ thioncyanate

2. Oxoanions (with oxygen).
 - Oxoanion that only has 1 member in its family.
 - Example: NOₓ

 \[\text{# of O} \uparrow \text{ate} \downarrow \text{ite} \] \[\text{NO}_3^⁻ \text{ nitrate} \]
 \[\text{SO}_3^²⁻ \text{ sulfite} \]
 \[\text{SO}_4^²⁻ \text{ sulfate} \]
 \[\text{PO}_4^³⁻ \text{ phosphate} \]
 \[\text{PO}_3^³⁻ \text{ phosphite} \]

3. Oxoanion that has 4 members in its family.
 - Chlorine oxoanion:
 - Prefix: per
 - Suffix: chlorate

 \[\text{# of} \] \[\text{ClO}_4^⁻ \text{ perchlorate} \]
 \[\text{ClO}_3^⁻ \text{ chlorate} \]
 \[\text{ClO}_2^⁻ \text{ chlorite} \]
 \[\text{ClO}⁻ \text{ hypochlorite} \]
③ Misfits.

④ H Containing oxoanion.

\[\text{SO}_4^{2-}, \text{CO}_3^{2-}, \text{PO}_4^{3-}, \text{HSO}_4^-, \text{HCO}_3^-, \text{HPO}_4^{2-}, \text{H}_2\text{PO}_4^-, \text{OH}^- \]

hydrate
- ionic compound incorporates water molecules in each formula unit.

ex \(\text{MgCl}_2 \cdot 2\text{H}_2\text{O} \)

magnesium chloride + di

\(\text{MgSO}_4 \cdot 7\text{H}_2\text{O} \)
magnesium sulfate heptahydrate.

\(\text{Cu SO}_4 \cdot 5\text{H}_2\text{O} \)
copper(II) sulfate pentahydrate
Acid.

Hydrogen containing compounds typically used as an aqueous solution in homogenous mixture in water.

1. Binary acid (made of elements).

 HCl HBr HF

 hydro + ic acid
 prefix non-metal root

 hydrochloric acid
 hydrobromic acid
 hydrofluoric acid.

2. Oxoacid (thing with oxygen, polyatomic ion).
 - same as polyatomic ion,
 'ate' → 'ic'
 'ite' → 'ous' + acid.

 H$_2$CO$_3$ H$_2$SO$_4$ H$_2$SO$_3$
 Carbonic acid Sulfuric acid Sulfurous acid.

 CO$_3^{2-}$ SO$_4^{2-}$ SO$_3^{2-}$
 Carbonate Sulfate Sulfite.
HClO₄
perchloric acid

HClO⁻
hypochlorous acid.

Covalent compound: O (organic)/organic).

→ NO, NO₂, N₂O, N₂O₄.

→ # matters in the name.

- binary covalent compound (2 elements).
 1. element w/ lower group # on periodic table.
 → Same group #, name higher
 period # goes 1st.

 2. 2nd element’s name ends w/ ‘ide’

→ insert # prefix prior to each element’s name.

N₂S₅
dinitrogen pentasulfide

BF₃
boron trifluoride
- oxygen.

 10: monoxide

 20: dioxide

 30: trioxide

 40: tetroxide

 50: pentoxide

 60: hexoxide

 70: heptoxide

 8: octoxide

 9: nonoxide

 10: deoxide

H₂O

carbon monoxide

 dihydrogen

② organic

 - CH - single bond - alkanes.

 CH₄ methane C₂H₆ ethane.

 "ane"
How to read a burette

3.5.