EXPERIMENT30A3: LEWIS STRUCTURES & SHAPES OF MOLECULES AND IONS

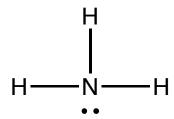
Learning Outcomes

Upon completion of this lab, the student will be able to:

- 1) Construct Lewis structures for simple ions and molecules.
- 2) Predict the shapes of simple ions and molecules from their Lewis structures.

Introduction

Lewis structures or electron dot formulas are a diagrammatic representation of the various electron groups, both bonding and non-bonding, around a central atom of an ion or molecule. Lewis structures enable the prediction of the three dimensional arrangement of the electron groups based on the **Valence Shell Electron Pair Repulsion (VSEPR)** theory.


Lewis structures can be constructed from the formula of an ion or a molecule by following a set of rules described below:

- 1. Count the total number of valence electrons. Add one electron for each negative charge and subtract one electron for each positive charge.
- 2. Place the least electronegative atom that is not hydrogen in the center.
- 3. Place all the other atoms around the central atom.
- 4. Connect the central atom to each outer atom by using a single covalent bond.
- 5. Complete the octet for the more electronegative outer atoms (only two electrons are required for hydrogen, four for beryllium, and six for boron).
- 6. Place any remaining electrons on the central atom.
- 7. If all the atoms do not have an octet then borrow electrons from an outer atom and construct a double or triple bond between the outer atom and the central atom.
- 8. Step 7 may result in multiple possibilities, called resonance structures. In case multiple possibilities exist, then find the formal charge of each atom in the structure.
 - a. The structure with the lowest set of formal charges (closest to zero) is the best Lewis structure.

- b. For structures with equal amounts of charge separation, the best structure will be the one where the negative charge is on the more electronegative atom.
- 9. There are a few exceptions to the octet rule:
 - a. Hydrogen, beryllium, and boron, as already discussed do not complete their octet.
 - b. Some nitrogen containing ions and molecules may have an odd number of total electrons and will therefore have one element with an incomplete octet.
 - c. Elements in period 3 and below are able to expand their octet and accommodate more than eight electrons in their valence shells due to the availability of vacant d-orbitals.

AXE Notation

Once the Lewis structure for an ion or molecule has been constructed, a molecule or ion "type" can be assigned to the structure that will indicate the numbers of bonding and non-bonding electron groups around the central atom. For instance, consider NH₃. The Lewis structure for this molecule is shown below:

In this structure nitrogen is the central atom and hydrogen is the outer atom. There are three bonds total between the nitrogen and the hydrogen- implying there are three bonding electron groups. There is also one lone pair of electron on the nitrogen- implying there is one non-bonding electron group.

To classify ions or molecules to a type, the central atom is depicted as A, the outer atoms in the bonding group as X and the non-bonding electron group as E. Since there are three bonding groups (so, 3 of X) and one non-bonding group (so, 1 of E), NH $_3$ would be classified as being the type AX_3E_1 . Once the type has been assigned, the following table can be used to determine the electron group geometry and the molecular geometry of the structure.

TABLE 1

Molecule or Ion type	Total number of electron groups	Number of bonding electron groups	Number of non- bonding electron groups	Electron group geometry	Molecular geometry	Bond angle
AX ₂	2	2	0	Linear	Linear	180°
AX ₃	3	3	0	Trigonal planar	Trigonal planar	120°
AX ₂ E ₁	3	2	1	Trigonal planar	Bent	
AX ₄	4	4	0	Tetrahedral	Tetrahedral	109.5°
AX ₃ E ₁	4	3	1	Tetrahedral	Trigonal pyramid	
AX ₂ E ₂	4	2	2	Tetrahedral	Bent	
AX ₅	5	5	0	Trigonal bipyramidal	Trigonal bipyramidal	180°, 120°
AX ₄ E ₁	5	4	1	Trigonal bipyramidal	See-saw	
AX ₃ E ₂	5	3	2	Trigonal bipyramidal	T-shape	
AX ₂ E ₃	5	2	3	Trigonal bipyramidal	Linear	
AX ₆	6	6	0	Octahedral	Octahedral	90°
AX ₅ E ₁	6	5	1	Octahedral	Square pyramid	
AX ₄ E ₂	6	4	2	Octahedral	Square planar	

NOTE: Structures with a) lone pairs on the central atom b) double bonds will tend to have compressed bond angles.

Experimental Design

Using a molecular model kit construct the three-dimensional arrangement of the atoms of the list of molecules or ions provided below in Table 2.

Table 2

HCN	BeF ₂	SO ₂	O ₃	OF ₂
BF ₃	CO ₃ ² -	CH ₄	ClO ₄ -	PF ₃
H ₂ O	PF ₅	SF ₄	BrF ₃	XeF ₂
IOF ₅	TeF ₅ -	XeF ₄	XeO ₂ F ₂	SO ₄ ²⁻

Reagents and Supplies

Molecular model kit

Procedure

- 1. Draw the Lewis structure of each molecule or ion in the list above.
- 2. Assign the Lewis structure to a specific type.
- 3. Determine the electron group geometry and the molecular geometry, using Table 1.
- 4. Using the molecular model kit, construct the model of each structure in Table 2.
- 5. Also indicate the bond angles and polarity of each structure.