Hyperbolic Function Project

Circles are part of a family of curves called **conics**. The various conic sections can be derived by slicing a plane through a double cone.

A hyperbola is a conic with two basic forms:

 $x^2 - y^2 = 1$ is the **unit hyperbola**.

Hyperbolic Functions: Similar to how the trigonometric functions, cosine and sine, correspond to the x and y values of the unit circle $(x^2 + y^2 = 1)$, there are hyperbolic functions, hyperbolic cosine (cosh) and hyperbolic sine (sinh), which correspond to the x and y values of the **right side** of the **unit hyperbola** $(x^2 - y^2 = 1)$.

Hyperbolic Angle: Just like how the *argument* for the trigonometric functions is an *angle*, the *argument* for the hyperbolic functions is something called a **hyperbolic angle**. Instead of being defined by arc length, the hyperbolic angle is defined by **area**.

If that seems confusing, consider the area of the circular sector of the unit circle. The equation for the area of a circular sector is $Area = \frac{r^2\theta}{2}$, so because the radius of the unit circle is 1, any sector of the unit circle will have an area equal to half of the sector's central angle, $A = \frac{\theta}{2}$. We could even *define* the angle measure to be twice the area of the sector it creates, $\theta = 2A$.

This is how we define the hyperbolic angle. The hyperbolic angle is equal to twice the area of the hyperbolic sector.

Note that for a negative hyperbolic angle, the area of the hyperbolic sector will be below the x-axis and can be considered negative for the purpose of finding the angle.

Grading: This project is worth a total of **35 points**. You may work with a partner if you choose to. Make sure your work is clear and comprehensible. Remember to **show your work** and write your name(s) on the front page. All problems should be done in order and **not on this packet**. Your completed assignment is due on **Wednesday**, **May 1** at the **beginning** of class. Late assignments will not be accepted for full credit.

In Exercises 1–6, evaluate sinh and cosh for the real number. Round to 1 decimal place. Then draw the hyperbolic angles in standard position.

1. 1 **2.** $-\frac{5}{2}$

5. $\frac{3}{4}$

6. $-\frac{8}{5}$

3. 7 **4.** ln 2

7. Compare the graphs of $\cosh x$ and x^2 . What similarities and differences do you notice? Evaluate both functions with a number greater than 10. Which seems to be "getting bigger" faster?

8. Compare the graphs of $\sinh x$, x^3 , and $\tan x$. What similarities and differences do you notice? Evaluate $\sinh x$ and x^3 with a number greater than 10. Which seems to be

"getting bigger" faster?

9. Are $\cosh x$ and $\sinh x$ odd, even, or neither? Justify your answer.

- **10.** Are $\cosh x$ and $\sinh x$ periodic?
- **11.** How do we define $\tanh x$?

12. The Pythagorean trigonometric identity is $\sin^2 x + \cos^2 x = 1$. Is there an analogous identity for the hyperbolic functions? If so, what is it? (*Hint: How does* $\sin^2 x + \cos^2 x = 1$ relate to the equation of the unit circle?)

13. (a) Graph $\cosh x + \sinh x$. What other function does this look like?

(b) Recall
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
 and $\sinh(x) = \frac{e^x - e^{-x}}{2}$.
Add $\frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2}$ and simplify. What is the result?

In Exercises 14–15, refer to the figures below.

14. Find the exact area of the shaded region in the graph on the left. (*Hint: The region contains two right triangles and two hyperbolic sectors.*)

15. The picture on the right depicts a wire hanging from two poles which can be modeled by a function called a **catenary**. A catenary is a curve used to model hanging ropes, wires, chains, etc., which takes the form $y = a \cosh \frac{x}{a} + b$. For parts (b) and (c), round your answer to two decimal places.

- (a) Given that b = -4, find the equation of the catenary in the picture.
- (b) Find the height of the two poles the wire is hanging from.
- (c) Find the distance from the center of the ground, (0,0), to the tops of the poles.