Exam 2 - Chapter 8 (8.1-8.3)
Formulas (given on test)

Formulas:

$$
\text { Arc length }=r \theta \quad \text { Sector area }=\frac{1}{2} r^{2} \theta
$$

Angular speed $=\frac{\text { angle }}{\text { time }} \quad$ Linear speed $=\frac{\text { arc length }}{\text { time }}$

8.1: Graphs of sine and cosine

- All sine and cosine curves are periodic
- The parent graphs $y=\sin (x)$ and $y=\cos (x)$ have a period of 2π
- Graph transformations of the form $y=A \cdot \sin (B x-C)+D$ and
$y=A \cdot \cos (B x-C)+D:$
- The amplitude is $|A|$. Amplitude is always positive. If A is negative, the parent graph is flipped or reflected vertically
- The period is $\frac{2 \pi}{B}$. (B will always be positive on the exam.)
- The phase shift is $\frac{C}{B}$. If C is positive, the shift is to the left. If C is negative, the shift is to the right.
- D is the vertical shift. The midline of the graphs is $y=D$.
- Graph a sine or cosine curve given an equation, or find an equation given a graph.
- List the amplitude, period, phase shift and vertical shift of a function given either a graph or an equation.
- Word problems involving sine or cosine curves.
8.2: Graphs of other trig functions
- The parent functions $y=\tan (x)$ and $y=\cot (x)$ have a period of π.
- The parent functions $y=\sec (x)$ and $y=\csc (x)$ have a period of 2π.
- Graph the parent functions $y=\tan (x), y=\cot (x), y=\csc (x)$, and $y=\sec (x)$
- Graph transformations of the form $y=A \cdot \tan (B x-C)+D$,
$y=A \cdot \cot (B x-C)+D, y=A \cdot \sec (B x-C)+D$ and $y=A \cdot \csc (B x-C)+D:$
- All of these graphs have asymptotes
- A gives the vertical stretch or compression. (A will always be positive on the exam for these graphs. Only sine and cosine graphs have an amplitude.)
- The period for tangent and cotangent graphs is $\frac{\pi}{B}$. The period for secant and cosecant graphs is $\frac{2 \pi}{B}$. (B will always be positive on the exam.)
- The phase shift is $\frac{C}{B}$. If C is positive, the shift is to the left. If C is negative, the shift is to the right.
- D is the vertical shift.
- Graph these trig functions given an equation, or find an equation given a graph.

8.3: Inverse trig functions

- For all trig functions, we must restrict the domain of the original function so it is one-to-one so we can define the inverse function.
- Know the domain and range of $y=\sin ^{-1}(x), y=\cos ^{-1}(x)$ and $y=\tan ^{-1}(x)$.
- Graph $y=\tan ^{-1}(x)$
- Compose trig functions and inverse trig functions using special angles or by drawing triangles
- IMPORTANT: Be careful composing $\sin ^{-1}(\sin (x)), \cos ^{-1}(\cos (x))$ and $\tan ^{-1}(\tan (x))$
- Inverse trig functions can help us find missing sides and angles in right triangles.
$\underline{\text { Suggested practice problems: }}$
- Quiz 3
- Ch. 8 Review p. 690-691 \#1-5, 8-10, 13-17, 19, 21-24, 27-37
- Ch. 8 Practice Test (from book) p. 692-693 \#1-5, 7, 8, 10-12, 14-20, 23, 29, 30, 36-40, 46-49

