Student Homework and Review Problem Answer Supplement

By Roberta Bloom

to accompany

Applied Finite Mathematics 3rd ed, 2016

by Rupinder Sekhon & Roberta Bloom De Anza College Cupertino CA

This answer supplement contains answers to

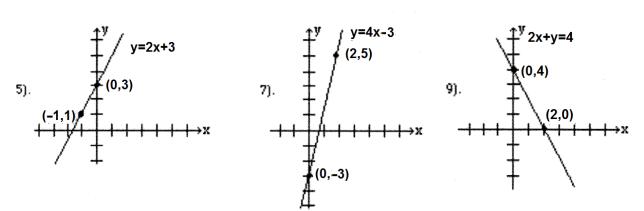
- most odd numbered homework problems (with a few exceptions that are not included)
- few selected even numbered homework problems in some sections of the textbook
- all end of chapter review problems for all chapters of the textbook

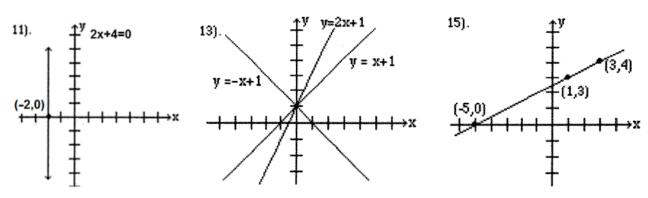
This supplement does not contain complete worked out solutions.

If you find any errors that need to be corrected, please send that information, or any other correspondence, to Roberta Bloom at <u>bloomroberta@deanza.edu</u> or bloomroberta@fhda.edu

Applied Finite Mathematics, 3rd edition, 2016 By Rupinder Sekhon 1995, 1996 Updated by Roberta Bloom 2016

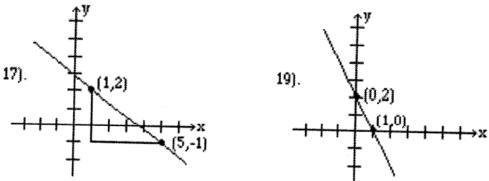
Chapter 1 Linear Models


Answers to Odd Numbered Homework Problems at end of sections and


Answers to all problems in Chapter Review Section

1.1 Graphing a Linear Equation

3). (2, -6), (6, 6), (0, -12), (4, 0)



1.2 Slope of a Line

1). m = 23). m = 15). m = -27). m = undefined9). m = -111). m = -213). m = 215). m = 3/4

1.2 Slope of a Line

1.3 Determining the Equation of a Line

1).
$$y = 2x + 4$$

3). $y = 6x - 13$
5). $y = 2/5 x - 4$
7). $y = 7x - 32$
9). $y = 5/2 x - 10$
11). $y = -4$
13). $x = 3$
15). $2x - y = 7$
17). $3x - 4y = -4$
19). $4x - 3y = 17$
21) $\gamma + 3 = \frac{1}{3}(x - 2)$ OR $\gamma - 1 = \frac{1}{3}(x - 5)$
23) $\gamma + 2 = -\frac{2}{3}(x - 6)$ OR $\gamma - 2 = -\frac{2}{3}(x - 6)$
25) $\gamma - 7 = -\frac{1}{3}(x + 12)$

1.4 Applications

1). y = 25x + 12003). y = 20x + 3505). y = 80x + 240007). y = 2/5x; 68 9). y = 7x - 338; 138 11). F = 9/5C + 32; 77°F 13) Y = .375x + 29.815) Y = 120x + 13200; 14400 students in 2010 17) Y = .18x + 10; the cost is \$82 for a home using 400 kwh of electricity per nonth 19) at y = 12x + 110,000b) y = \$230,000c) x = \$7500

1.5 More Applications

1.6 Review Problems

1). $y = 0$	2)2/3	3) 3
4). 4,6	5). $y = 3x + 5$	6). $3x + 2y = 6$
7). $y = 3x + 9$	8). $3x + 2y = 18$	9). y = 9/5 x + 32
10). $y = 3x - 1$	11). (3,-1)	12). No
13). (2,1), (5,-1); Answers wi	ll vary 14). (3,	0), (3, 1); Answers will vary
15). The line through (-3,0)&	(0,2) 16). Th	e line through (0,3)& (1,1)
17). $y = 4x - 140; 140$	18). y =	• 1.35x + 15.2; 142.5
19). $y = 30x + 2750$	20). y =	= 10x + 1500; 4500
21). $y = 15x + 1200; 16200$	22). y =	10000x + 280000; 580000
	to if using	x = calendar year X = years since 1990 \$430,000

1.6 Review Problems

23) y = 1.5x + 95.4 if using x = & of years after 1995 y = 1.5x - 2897.1 if using x = calendaryear
24) a) y = -2x + 230 b) 80 books of solp c) 65°F
25) y = -50x + 450 260 y = 80x - 400
27) Price = \$6 j number of mugs = 1300
28) Plan I: y = 16+.25 × Plan II y = 45 At x = 200 miles Plan I costs \$66 j Plan II costs \$45 Both cost the same at x = 116 miles
29) a) 4500 b)\$20 c)\$15 d) 2750 items
30) \$12 ; 6900 items 31) \$1700 sales
31) \$600 items; revenue = cost = \$15000
33) 4000 CFL bulbs
34) 2500 items

Applied Finite Mathematics, 3rd edition, 2016 By Rupinder Sekhon 1995, 1996 Updated by Roberta Bloom 2016

Chapter 2 Matrices

Answers to Odd Numbered Homework Problems at end of sections and

Answers to all problems in Chapter Review Section

2.1 Introduction to Matrices

1)
$$\begin{bmatrix} 18 & 15 \\ 14 & 13 \\ 12 & 9 \end{bmatrix}$$
 3) $\begin{bmatrix} 84 \\ 68 \\ 54 \end{bmatrix}$ 5) $\begin{bmatrix} 112.2 \end{bmatrix}$
7) $AB = \begin{bmatrix} 12 & 22 & 19 \\ 10 & 7 & 5 \\ 9 & 15 & 13 \end{bmatrix}$ 9) $AB + BA = \begin{bmatrix} 19 & 35 & 19 \\ 17 & 25 & 20 \\ 20 & 38 & 20 \end{bmatrix}$
11) $2BC = \begin{bmatrix} 10 \\ 30 \\ 16 \end{bmatrix}$ 13) $A^2B = \begin{bmatrix} 105 & 123 & 100 \\ 37 & 52 & 44 \\ 73 & 87 & 71 \end{bmatrix}$
15) $FE = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} m & n \\ P & q \end{bmatrix} = \begin{bmatrix} am + bp & an + bq \\ cm + dp & cn + dq \end{bmatrix}$
17) H is a 3×1 matrix. G is a 3×3 matrix.
HG does not equal the number of rows in G.
19) $\begin{bmatrix} 1 & -2 & 2 \\ 1 & -3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \begin{bmatrix} x \\ Y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ -12 \\ 1 \end{bmatrix} OR \begin{bmatrix} 2 & 1 & 2 & 3 \\ 0 & 1 & -2 & -1 \\ 4 & 0 & 1 & -2 \\ 3 & 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} W \\ X \\ Y \\ z \\ z \end{bmatrix} = \begin{bmatrix} 14 \\ -5 \\ q \\ 15 \end{bmatrix}$

2.2 System of Linear Equations; Gauss-Jordan Method

1).	(4, -1)	3).	(2, -1, 3)
5).	(0.4, 0.3)	7).	(4, 3, 2, 1)

2.3 System of Linear Equations; Gauss – Special Cases

- 1). (4 3t, t)
- 5). (3 4/7 t, -1 + 16/7 t, t) 7). No, they are not consistent.

3). Inconsistent system, no solution

- 9). (5, 3, 1), (4, 3, 2), (3, 3, 3) 11). (5-3s+t, s, t)

2.4 Inverse Matrices

- 5). $\begin{bmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -1 & -1 & 1 \end{bmatrix}$ 3). $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ 9). (3, 3, 4) 7). (4, 2)
- 11). If a matrix M has an inverse, then the system of linear equations that has M as its coefficient matrix has a unique solution. If a system of linear equations has a unique solution, then the number of equations must be the same as the number of variables. Therefore, the matrix that represent its coefficient matrix must be a square matrix.

2.5 Application of Matrices in Cryptography

- 1). $\begin{bmatrix} 71\\24 \end{bmatrix} \begin{bmatrix} 66\\23 \end{bmatrix} \begin{bmatrix} 78\\35 \end{bmatrix} \begin{bmatrix} 87\\36 \end{bmatrix} \begin{bmatrix} 114\\47 \end{bmatrix}$
- 3). RETURN HOME

5).
$$\begin{bmatrix} 12\\51\\9 \end{bmatrix} \begin{bmatrix} 11\\67\\2 \end{bmatrix} \begin{bmatrix} 19\\95\\14 \end{bmatrix} \begin{bmatrix} 14\\105\\-11 \end{bmatrix} \begin{bmatrix} 15\\87\\-3 \end{bmatrix} \begin{bmatrix} 27\\91\\18 \end{bmatrix} \begin{bmatrix} 4\\67\\-23 \end{bmatrix}$$

HEAD FOR THE HILLS

2.6 Applications – Leontief Models

1). $(t, -2t, t)$ 3). Chris = \$1250, Ed = \$1,000	5). $\begin{bmatrix} 315.34\\ 383.52\\ 440.34 \end{bmatrix}$
7). Farming = \$201,754.38, Building = \$307,017.54	9). $\begin{bmatrix} 30/100 & 10/120 & 20/110 \\ 20/100 & 30/120 & 20/110 \\ 10/100 & 10/120 & 30/110 \end{bmatrix}$

2.7 Chapter Review

1). a. $\begin{bmatrix} 1000 & 400 & 15 \\ 800 & 500 & 20 \end{bmatrix}$	b. [30 50]
2). a. $\begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$	b. $\begin{bmatrix} -3 & -9 & 11 \\ 7 & -14 & 9 \end{bmatrix}$
3). a. $\begin{bmatrix} -2 & 8 & 0 \\ -2 & 4 & 6 \\ -4 & 6 & 6 \end{bmatrix}$	$\mathbf{b}. \begin{bmatrix} -5 & 10 & 2 \\ -7 & 4 & 7 \\ -8 & 9 & 7 \end{bmatrix}$
4). a. $\begin{bmatrix} 2 & -2 & 4 \\ 14 & 16 & -22 \\ 8 & 10 & -14 \end{bmatrix}$	$\mathbf{b} \begin{bmatrix} 9 & -3 \\ 6 & -3 \end{bmatrix}$
5). a. $\begin{bmatrix} 2a-2c+6e & 2b-2d+6f \\ 6a+4c+2e & 6b+4d+2f \end{bmatrix}$	b. $\begin{bmatrix} a+3b & -a+2b & 3a+b \\ c+3d & -c+2d & 3c+d \\ e+3f & -e+2f & 3e+f \end{bmatrix}$
6). a. (2, 1, -1)	b. (3, 2, 1)
7). Apple = \$.50; banana = \$.30; orar	nge = \$.40

8). a. x = 6 - t, y = 0, z = t; (5, 0, 1) b. no solution

9). n = 3t - 12, d = -4t + 24, q = t; n = 3, d = 4, q = 510). a. x = 4-2t, y = t, z = 3; (4, 0, 3) b. x = 5-4t, y = 2-t, z = t; (1, 1, 1)11). a. x = .5t, y = t, z = 2t; (1, 2, 2) b. no solution 12. a. $\begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix}$ b. $\begin{bmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$ 13). a. (-1, 4, 2) b. (6, 4, 2, -1)14). a. $\begin{bmatrix} 22 \\ 33 \\ 1 \end{bmatrix} \begin{bmatrix} 59 \\ 68 \\ 27 \end{bmatrix} \begin{bmatrix} 74 \\ 75 \\ 27 \end{bmatrix} \begin{bmatrix} 22 \\ 49 \\ 4 \end{bmatrix} \begin{bmatrix} 60 \\ 74 \\ 21 \end{bmatrix}$ b. $\begin{bmatrix} 17 \\ 37 \\ 5 \end{bmatrix} \begin{bmatrix} 57 \\ 78 \\ 15 \end{bmatrix} \begin{bmatrix} 74 \\ 91 \\ 27 \end{bmatrix} \begin{bmatrix} 39 \\ 42 \\ 9 \end{bmatrix} \begin{bmatrix} 65 \\ 92 \\ 27 \end{bmatrix}$ 15). a. NO PAIN NO GAIN b. GO FOR THE GOLD 16). x = 40/33 t, y = 36/33 t, z = t; Chris = 40 hrs, Bob = 36 hrs, Matt = 33 hrs 17). Chris = 34.1 hrs, Bob = 32.2 hrs, Matt = 35.2 hrs Applied Finite Mathematics, 3rd ed, 2016 Sekhon/Bloom Chapter 3: Linear Programming: Geometric approach Answers to Odd Numbered Homework Problems and Answers to all Problems in the Chapter Review Section

Answers To Odd-numbered Problems

3.1 Maximization Applications

- 1). 80 acres of wheat and 20 acres of corn should be planted to maximize profit to \$8,400.
- 3). 10 chairs and 15 tables should be manufactured to maximize profit to \$650.
- 5) Maximum value of Z is 40 when x = 0 and y = 4

3.2 Minimization Applications

- 30 units of Food A and 45 units of Food B should be purchased to keep costs at a minimum of \$105.
- 3). Cost: C = 12,000 x + 10,000 y

Ι.	$200 \text{ x} + 100 \text{ y} \ge 800$	high-grade oil
u.	300 x + 100 y ≥ 900	medium-grade oil
ш.	200 x + 200 y ≥ 1000	low-grade oil

Refinery A should be operated for 3 days, while Refinery B should be operated for 2 days to keep a minimum cost of \$56,000.

3.3 Chapter Review

1). (16000, 4000); \$2240	2). (2,3); \$34,500	3). (8, 20); \$480
4). (12000, 8000)	5). (72, 180; \$5760	6). (165, 35); \$21,750
7). (20, 60); \$34	8). (20, 20); \$2.40	9). (6, 18); \$1650
10). (35, 100; \$2600	11). (40, 20); \$100,000	12). (10, 5): 17.5 minutes
13). (1000, 800); \$7400		

Applied Finite Mathematics, 3rd edition

Chapter 4: Linear Programming by the Simplex Method Answers to Odd Numbered Homework Problems and Answers to all problems in the Chapter Review Section

4.1 No homework problems

4.2 Maximization by the Simplex Method

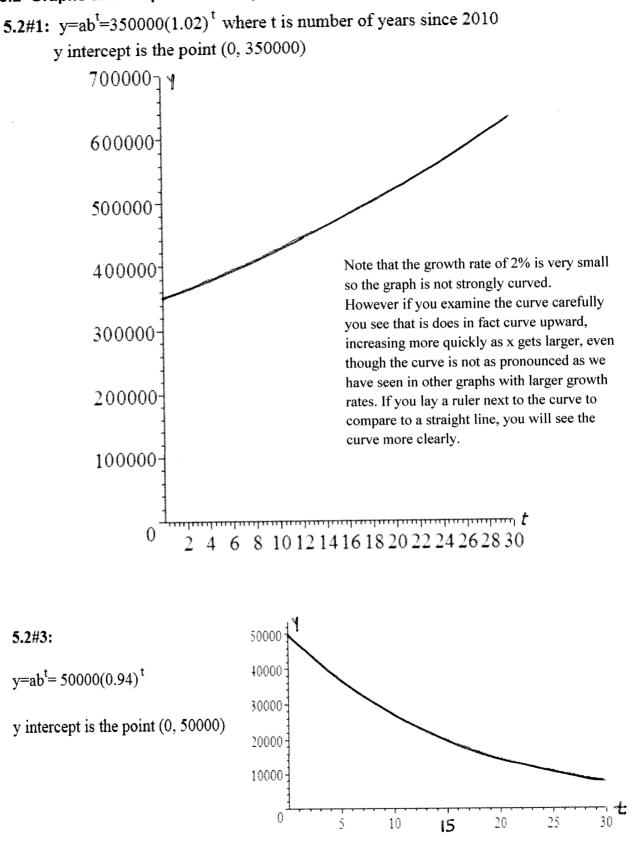
- 1). $x_1 = 0, x_2 = 9, x_3 = 3, z = 27$ 3). Wheat 80 acres, corn 20 acres; Profit \$8400
- 5). 600 boxes; 400 of Box I, 200 of Box II, and none of Box III

4.3 Minimization by the Simplex Method

1) Dual program is Maximize $z = 7y_1 + 9y_2$ Subject to $2y_1+4y_2 \le 6$, $3y_1+5y_2 \le 8$, $y_1 \ge 0$, $y_2 \ge 0$ Answer to minimization problem is $x_1 = 0$, $x_2 = 7/3$, z = 56/3

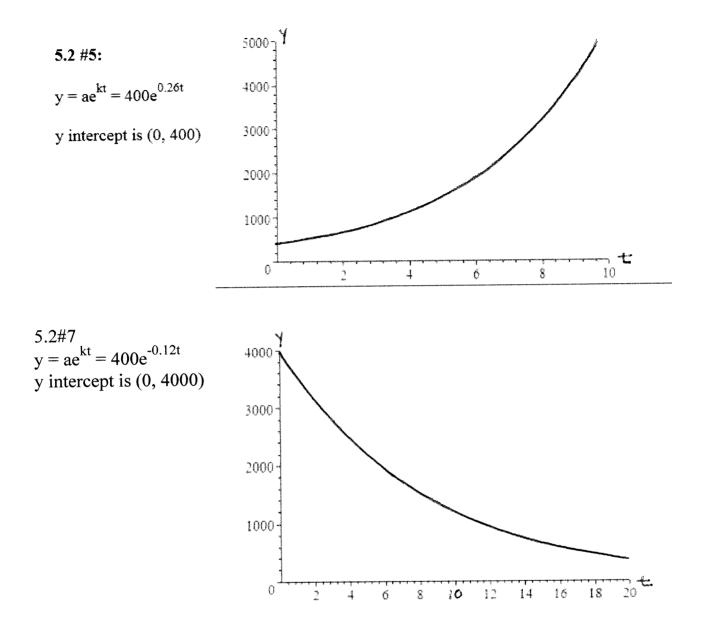
3) Dual program is Maximize $z = 10y_1 + 24 y_2$ Subject to $1y_1+3y_2 \le 4$, $1y_1+2y_2 \le 3$, $y_1 \ge 0$, $y_2 \ge 0$ Answer to minimization problem is $x_1 = 4$, $x_2 = 6$, z = 34

4.4 Review Problems

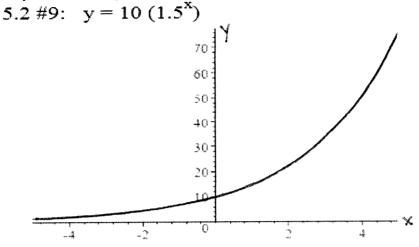

- 1). $x_1 = 4, x_2 = 8, y_1 = 0, y_2 = 0, z = 44$
- 2). $x_1 = 6$, $x_2 = 12$, $y_1 = 0$, $y_2 = 0$, z = 126
- 3). $x_1 = 6$, $x_2 = 4$, $x_3 = 0$, $y_1 = 0$, $y_2 = 0$, z = 24
- 4). $x_1 = 450$, $x_2 = 0$, $x_3 = 1800$, $y_1 = 750$, $y_2 = 0$, $y_3 = 0$, z = 14,850
- 5). $x_1 = 0$, $x_2 = 200$, $x_3 = 1600$, $y_1 = 0$, $y_2 = 0$, $y_3 = 1200$, z = 9600
- 6). $x_1 = 2, x_2 = 4, z = 64$
- 7). $x_1 = 10, x_2 = 10, x_3 = 0, z = 100$
- 8). x₁ = 15/4, x₂ = 35/4, x₃ = 0, z= 570
- 9) $x_1 = 0$, $x_2 = 80$, $x_3 = 100$, $y_1 = 0$, $y_2 = 20$, $y_3 = 0$, z = 23000
- 10). $\mathbf{x}_1 = 0$, $\mathbf{x}_2 = 30$, $\mathbf{x}_3 = 60$, $\mathbf{y}_1 = 0$, $\mathbf{y}_2 = 0$, $\mathbf{z} = 3300$
- 11). $x_1 = 60, x_2 = 20, z = 340,000$
- 12). $x_1 = 12$, $x_2 = 0$, $x_3 = 10$, z = 42

Applied Finite Mathematics 3rd ed. 2016 by Sekhon/Bloom

Chapter 5 Exponential and Logarithmic Functions Sections 5.1, 5.2, 5.3, 5.5 Answers to Odd Numbered Homework Questions Section 5.4 Answers to Homework Questions #6-11 Section 5.6 Chapter Review Questions Answers to all Questions

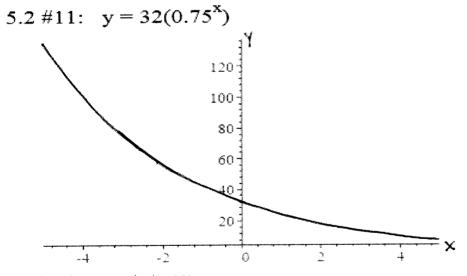

5.1 Exponential Growth and Decay Models

1) exponential 3) linear 5) linear T) power 9) decay 11) growth 13) $y = 127(.7047)^{\pm}$ r = -.2953 29.53% annual decay rate 15) $y = 17250(1.2712)^{\pm}$ r = .2712 27.12% annual growth rate 17) $y = 350000 + 70000\pm$ At t = 5 y = \$38500019) $y = 50000(.94)^{\pm}$ At t = 10 y = \$26930.7621) $y = 200 \pm 10t$ At t = 7 y = 27023) $y = 200 \pm 10t$ At t = 7 y = 27023) $y = 300(.93)^{\pm}$ At t = 6 y = 19425) $y = 4000 e^{-.125}$ At t = 10 y = 1205



5.2 Graphs and Properties of Exponential Growth and Decay Models

5.2 Graphs and Properties of Exponential Growth and Decay Models



5.2 Graphs and Properties of Exponential Growth and Decay Models

- b. y intercept is (0, 10)
- c. Horizontal asymptote is the x axis which is the line y = 0. The function approaches the asymptote as x→ - ∞
- d. Domain all real numbers

Range - all positive real numbers

- b. y intercept is (0, 32)
- c. Horizontal asymptote is the x axis which is the line y = 0. The function approaches the asymptote as x→∞
- d. Domain all real numbers

Range - all positive real numbers

5.3 Logarithms and Logarithmic Functions

1)
$$\log_{3} 81=4$$
 3) $\log_{5} .04=-2$
7) $\log_{10} 2=\frac{1}{4}$ 9) $5^{4}=625$ 9) $(1^{3}=133)$
11) $64^{1/3}=4$ 13) $\log_{5} 15625=x$ 15) $5^{x}=125$
17) $10^{4}=y$ 19) $x=e^{-1}$ or $x=\frac{1}{e}$ (equivalent)
21) $x=5^{3}$ so $x=125$ 23) $x=10^{-3}$ so $x=\frac{1}{1000}=.001$
25) $x=25^{1/2}$ so $x=126=5$
27) $\frac{1}{3}$ 29) 10 31) 1.30103 33) 1.06471
35) 2.58496 37) 25.676548

- 5.4 Graphs and Properties of Logarithmic Functions Answers to matching graphs questions #6-11
 - 6) $y=3e^{-6X}$ T) $Y=\log_2 x$ 8) $Y=3(2^X)$ 9) $Y=\log_2 x$ 10) $Y=5e^{-8x}$ 11) $Y=5(.4^X)$
- 5.5 Applications of Exponential and Logarithmic Functions

(b)
$$y = 20000(1.05^{\pm})$$
 b) At $t = 12, y = 35917.13
c) $y = 30000$ at $t = 8.31$ years
3) $a = 55974.13
(f) $y = 5000$ at $t = 13.8$ months
(f) $y = 100000$ at $t = 9.35$ years
(g) $r = .0227$ 2.27% annual growth rate
(f) $r = -.0543$ 5.43% annual decay rate
(f) $r = -.0543$ 5.43% annual decay rate
(f) $y = 7900(1.603)^{\pm}$
(g) $y = 7900(1.603)^{\pm}$
(g) $y = 18720e^{.38526\pm}$
(g) $y = 18720e^{.38526\pm}$
(g) $y = 1200(.925)^{\pm}$

(1) a)
$$a = \$ 45503$$
 b) $t = 9.6$ years c) $\$ 35202$
(2) a) $y = 40000(.973)^{t}$ b) $\$ 30422$ c) $t = 25.32$ years
(3) a) $y = 25000(1.064)^{t}$ b) $\$ 86451.51$
(4) a) $a = 146512$ b) $t = 16.96$ years c) 188500
(5) a) $a = 98$ b) $t = 7.2$ years
(6) a) $r = -.2323$ Hourly decay rate is 23.23%
b) $t = 3.31$ hours c) 36.2 mg
(7) $r = .165$ Annual growth rate is 16.5%
(8) $Y = 375000 e^{.11738t}$
(9) $Y = 375000 e^{.1178t}$
(10) $y = 5400(1.13542)^{t}$
(2) $Y = 230(.53794)^{t}$
(3) $Y = 3600 e^{-.8675t}$

Applied Finite Mathematics 3rd ed. 2016 by Sekhon/Bloom Chapter 6 Financial Calculations Answers to Odd Numbered Homework Problems and all Chapter Review Problems

6.1 Simple Interest and Discount

1). \$600	3). \$3048	5). \$1800
7). \$872	9). 11%	
11). Discount \$240, Proceeds	\$1,760	
13). \$7,440	15). \$2,790.70	

6.2 Compound Interest

1). \$11,542.52	3). \$5,647.77	
5). Bank B pays more.	Bank A $r_{EFF} = 0.0513$	Bank B $r_{EFF} = 0.0523$
7). \$12,702.00	9). 8.66 years	11). \$151,257.12
13). 7.3967%	15) 17.38 million p	people

6.3 Annuities and Sinking Funds

1).	\$13,954.01	3).	\$15,904.47
5).	\$20,578.36	7).	\$6,438.02
9) .	A lump sum of \$25,000 For \$400 paid		ter. A = \$38002.64 thly A = \$35872.42
11).	\$112,552.26		

6.4 Present Value of an Annuity and Installment Payment

- 1). \$1,177,953.55 3). \$12,043.34
- 5). \$2,149.21 7). \$1,976.80 11). \$3,645.04

9). Leasing is better P = \$37,908 if payments are assumed made at the end of each year as is the general assumption in this book.

However: if #9 is considered with payments made at the beginning of each year, then the present value is \$41699 = 37,908(1+0.10), which is greater than \$40,000.

In this case, buying would be better assuming payments at the beginning of each year, which more realistically represents the stiuation in practice in the real world.

6.5 Miscellaneous Application Problems

1) M= \$1123.06 5) P= \$5579.64	3) P=\$ 171907.63 7) P=\$11680.01
9) m= \$333.85/ MON	th 10) m=\$2177.77/month
(1) A = \$305421.70	12) m= \$2479.37
13) $P = P_1 + P_2 = 447.5$ 15) $P = P_1 + P_2 = 435.5$	70+471,48=\$919,18 48+806,45=\$1241-94
17) a) A = \$ 30535.	40 b) m= \$720,63/month

6.6 Classification of Finance Problems

1). D	3). F	5). E
7). D	9a). B 9b). F	11). F
13). A	15). B	17). A
19). B		

6.7 Chapter Review

```
1) $870=A 2) 81,596 3) $1190.50=m
4) $1755.93= m 5) P=$12156.72
6)$140383.25 7) m= $289,28
8) P=16290.63 loan so value= $19290,63
9) P= $2085,33 (0) P= $688,675.54
 11) $497897.83
 12) $928,94 IF r=.07 or $1077.95 IF r=.05
 13) A = $344 7.31
 14) a) m = $1643.90 b) $ 128451.61
 15) $9898,48
 16) PV = P= $ 1213539.16 = FV=A= $ 5745936.31
 17) $ 6669.70 = m 18) $ 767123287.67
19) m= $2375.25 20) 109,619
 21) $ 5805,92=A 22) P=$2138.67
 23) $1523.33
                   24) $276.68=0
 25) If leasing P= $7835.35, and the down payment
     of $750 brings the present value to $8585.33
      Purchasing for $ 8000 is cheaper.
26) Cost in 5 years is $20615,73
     Sinking fund deposit m= $833.79/ quarter
27) Western Bank rEFF = .0597 or 5.97%
     City Bank is better
 28) m= $404.57
      $ 300 per month for 5 years: P=$14900.82
 29)
      $ 500 permanth for 3 years: P= $ 16026.39 is better
 30) 10.19 years =t
 31) $ 177692.68 = A
 32) $ 20000 + $ 500/month for 10 years: P= $61210.74
      $ 12000 + $ 1000/month for 5 years: P= $61318.43 better
 32) P= $16384.77
34) Monthly payment $ 2204.21
     Total pard $793515.60=(2204.21)(360)
      Interest $ 368515.6 = 793515.00 - 425000
 35) 15.53 years
```

Applied Finite Mathematics 3rd ed. 2016 by Sekhon/Bloom Chapter 6 Financial Calculations Answers to Odd Numbered Homework Problems and all Chapter Review Problems

6.1 Simple Interest and Discount

1). \$600	3). \$3048	5). \$1800
7). \$872	9). 11%	
11). Discount \$240, Proceeds	\$1,760	
13). \$7,440	15). \$2,790.70	

6.2 Compound Interest

1). \$11,542.52	3). \$5,647.77	
5). Bank B pays more.	Bank A $r_{EFF} = 0.0513$	Bank B $r_{EFF} = 0.0523$
7). \$12,702.00	9). 8.66 years	11). \$151,257.12
13). 7.3967%	15) 17.38 million p	people

6.3 Annuities and Sinking Funds

1).	\$13,954.01	3).	\$15,904.47
5).	\$20,578.36	7).	\$6,438.02
9) .	A lump sum of \$25,000 For \$400 paid		ter. A = \$38002.64 thly A = \$35872.42
11).	\$112,552.26		

6.4 Present Value of an Annuity and Installment Payment

- 1). \$1,177,953.55 3). \$12,043.34
- 5). \$2,149.21 7). \$1,976.80 11). \$3,645.04

9). Leasing is better P = \$37,908 if payments are assumed made at the end of each year as is the general assumption in this book.

However: if #9 is considered with payments made at the beginning of each year, then the present value is \$41699 = 37,908(1+0.10), which is greater than \$40,000.

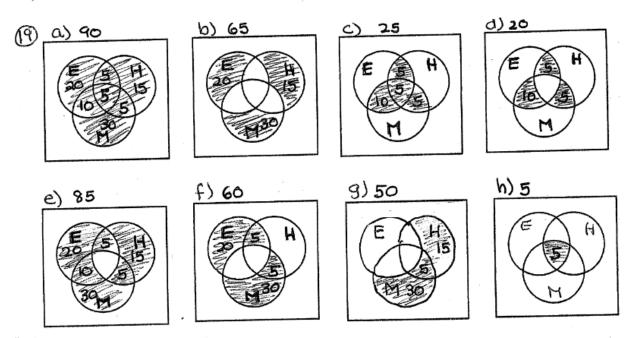
In this case, buying would be better assuming payments at the beginning of each year, which more realistically represents the stiuation in practice in the real world.

6.5 Miscellaneous Application Problems

1) M= \$1123.06 5) P= \$5579.64	3) P=\$ 171907.63 7) P=\$11680.01
9) m= \$333.85/ MON	th 10) m=\$2177.77/month
(1) A = \$305421.70	12) m= \$2479.37
13) $P = P_1 + P_2 = 447.5$ 15) $P = P_1 + P_2 = 435.5$	70+471,48=\$919,18 48+806,45=\$1241-94
17) a) A = \$ 30535.	40 b) m= \$720,63/month

6.6 Classification of Finance Problems

1). D	3). F	5). E
7). D	9a). B 9b). F	11). F
13). A	15). B	17). A
19). B		


6.7 Chapter Review

```
1) $870=A 2) 81,596 3) $1190.50=m
4) $1755.93= m 5) P=$12156.72
6)$140383.25 7) m= $289,28
8) P=16290.63 loan so value= $19290,63
9) P= $2085,33 (0) P= $688,675.54
 11) $497897.83
 12) $928,94 IF r=.07 or $1077.95 IF r=.05
 13) A = $344 7.31
 14) a) m = $1643.90 b) $ 128451.61
 15) $9898,48
 16) PV = P= $ 1213539.16 = FV=A= $ 5745936.31
 17) $ 6669.70 = m 18) $ 767123287.67
19) m= $2375.25 20) 109,619
 21) $ 5805,92=A 22) P=$2138.67
 23) $1523.33
                   24) $276.68=0
 25) If leasing P= $7835.35, and the down payment
     of $750 brings the present value to $8585.33
      Purchasing for $ 8000 is cheaper.
26) Cost in 5 years is $20615,73
     Sinking fund deposit m= $833.79/ quarter
27) Western Bank rEFF = .0597 or 5.97%
     City Bank is better
 28) m= $404.57
      $ 300 per month for 5 years: P=$14900.82
 29)
      $ 500 permanth for 3 years: P= $ 16026.39 is better
 30) 10.19 years =t
 31) $ 177692.68 = A
 32) $ 20000 + $ 500/month for 10 years: P= $61210.74
      $ 12000 + $ 1000/month for 5 years: P= $61318.43 better
 32) P= $16384.77
34) Monthly payment $ 2204.21
     Total pard $793515.60=(2204.21)(360)
      Interest $ 368515.6 = 793515.00 - 425000
 35) 15.53 years
```

APPLIED FINITE MATHEMATICS 3rd Edition, 2016, Sekhon/Bloom Chapter 7: Sets and Counting Answers to Odd Numbered Homework Problems and Answers to all Problems in the Chapter Review Section

7.1 Sets

- {Al, Bob}, {Al}, {Bob}, Ø
 3). {Bob, Chris, Dave}
 5). {a, e, i, f, h, c, g}
 7). {b, d, j}
- 9). {1, 2, 3, 4, 5, 6} 11). Ø
- 13). 9 students 15). 65
- 17). a. 30 b. 60 c. 10

7.2 Tree Diagrams and the Multiplication Axiom

1). 6	3). 8	5). 12
7). 15,600,000	9). 6,400,000	11). BB, BG, GB, GG
13). 16	15). 27,000	17) 10,000
7.3 Permutations		
1). 60	3). 210 5). 362,880	7). 25,200
9). 900	11). 48 13). 72	15). 2,400
17) 15,120	19) 5,040 21) 720

7.4 Circular Permutations and Permutations with Similar Elements

	1). 24	3). 120	5). 120	7). 64,864,800
	9). 210	11). 6	13). 10	15). 210
	17) 15,120	19) 5,040	21) 7	20
7.5 Combina	ations			

1). 120 3). 10 5). 2,598,960 7). 66 9). 10 11). 20 13). 6 15). 924 **17) 35 19) 84**

7.6 Combinations Involving Several Sets

1). 24	3). 25	5). 14,400		
7). 4	9). 60	11). 80		
13). 51	15). 7	17). 1,410		
19). 171,600	21). 22,308	23). 24		
25) (44C4) (54C5) (2C1) ≈ 8.586 × 1011				
27) (80 ℃ 6) (20 ℃ 6) ≈ 1.1647 × 10 ¹³				

7.7 Binomial Theorem

•.e

1).
$$a^{5}+ 5a^{4}b+10a^{3}b^{2}+10a^{2}b^{3}+ 5ab^{4}+b^{5}$$

3). $x^{5} - 10x^{4}y + 40x^{3}y^{2} - 80x^{2}y^{3} + 80xy^{4} - 32y^{5}$
5). $2160x^{4}y^{2}$ 7). 280 9). 10 11). 64

7.8 Chapter Review

7.8 Chapter Rev	iew		
	1). 1,000	2). 20; 135; 15	3). 12
	4). 144	5). 3,024	6). 11,639,628,000
	7). 84	8). 60	9). 24
	10). 126; 336; 210	11). 5,184	12). 1,048,576
	13). 46,200	14). 60	15), 120
	16). 20	17). 10	18). 1296
	19). 27,720	20). 720	21). 194,594,400
	22). a. 5148 b. 58,656 c. 123	552 d. 10,240 or 9216	23). 17,576
	24). 4500	25). 5040; 720	26). 3003; 371; 210; 191; 435
	27). 10	28). 35	29). 72
	30). 72,000	31)48384 x ⁵ y ³	32). 2016 a ⁵ b ⁴

APPLIED FINITE MATHEMATICS 3rd Edition, 2016, Sekhon/Bloom Chapter 8: Probability Answers to Odd Numbered Homework Problems and Answers to all Problems in the Chapter Review Section

8.1 Sample Spaces and Probability

1). {1, 2, 3, 4, 5, 6} 3). {1H,2H,3H,4H 5H,6H,1T,2T,3T,4T,5T,6T}

5).	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)
7). 4/52	•	9).	13/52		11), 16/5	2
13). 6/20		15).	13/20		17). 3/8	
19). 6/8		21) 2/8		23) 4	136
25)7/30	ø	2-	13 6/36		29) 8	5/12
31) 6/12		33	5) 1/16			

8.2 Mutually Exclusive Events and Addition Rule

1). Yes	3). No	5). No
7). 16/52	9). 13/36	11). 40%
13) 30/100	15) 94/100	17) 68/100
19) not motually	exclusive	21) 0
23) .5	25),40	

8.3 Probability Using Trees and Counting

1). 20/56	3). 6/56	5). 1/6
7). 3/10	9). 10/220	11), 56/220
13). 45/1365	15). 21/1365	17). 324/1365
19). 79092/2,598,960 = (0.03043	21). 24/2,598,960 =0.000009234
23). 1,584/2,598,960 = 0.	006	25) 1890/12376 = 0.1527
27) 1680/12376=0.1357	,	29) 180/792 = 0.227
31) 21/792=0.0265		33) 0.972864

8.4 Conditional Probability

1). 4/12	3). 1/3	5). 30/44
7). 6/54	9). a. 1/6 b. 1/4	11) 0.12
13). 0.4	15). 0, 696	17) 1/2
19) 3/4	21) 84/528	23) 84/2096
25) 188/796		

8.5 Independent Events

5). a. 3/4 b. 2/4 c. 2/4	d. no	
7). 0.12	9). 0.36 11). y	es
13). a. 28/100 b. 82/100 17) Oyes b) 00175	15). a. 7/8 b. 6/8 c. 6/8 d. no 19) a) no b) D. 08	

8.6 Chapter Review

1). 3/36; 4/36	2). 8/12; 7/12	3). 8/52; 16/52		
4). 3/5; 9/10	5). 3/20; 1/20; 5/6; 1/6	6). 1/16; 1/4		
7). 3/4;0	8). 0.72	9). 40%		
10). independent	11). 3/4; 0.45	12). 0.8144		
13). 0.22	14). 0.45278			
15). a. 111540/2598960; b. 949104/2598960; c. 1349088/2598960 d. 36/2598960				
16). 9/20; 10/27; 15/33; 11/20; no; yes 17). 0.40				
18). 3/14; 37/42; 2/7; 35/84	19). no	20). 0		
21). 0.65	22). 0.36	23). 5/6		
24). 0.2	25). 0.5	26). 0.3		

APPLIED FINITE MATHEMATICS 3rd Edition, 2016, Sekhon/Bloom Chapter 9: Probability Answers to Odd Numbered Homework Problems and Answers to all Problems in the Chapter Review Section

9.1 Binomial Probability

1). 0.2051	3). 0.0322	5). 0.9421
7). 0.2305	9). 0.5	11). 0.6778
13a) 0.0875	13b) 0.000097	
15a) 0.2785	15b) 0.613	

9.2 Bayes' Formula

1). a. 0.6458	b. 0.4706	c. 0.625
3). the Reput	blican party	
5). 0.7787		
7). a. 0.045	b. 0.2667 c. 0.03	
9a) 0.02	9b) 0.111	

9.3 Expected Value

1). No; you can expect to los	No; you can expect to lose \$3,000.		
5). 1.7	7) 83 cents	9). 39,000	
11) 96 cents	13a) 1.35 13b) 40	5	

9.4 Probability Using Tree Diagrams

1).	3/5	3).	0.94	5).	0.448
7).	0.6127	9).	125/1296	11).	0.776

9.5 Chapter Review

1). 0.3125; 0.1875	2). 0.088	3). 0.21094
4). 0.33696	5). 0.74432	6). 0.512
7). 0.52559	8). 4	9). 7/18; 2/3; 6/11
10). 0.37975	11). 14/17	12). 4.4%; 35/44; 0.05
13). 0.62; 54/62	14). 0.036; 28/36	15). 69%
16). \$7	17)\$5.26	18). 25
19). 10%	20). \$60,000	21). 29.167
22). \$5	23). 3/8	24). 0.45
25). 0.957125	26). 0.027	27). 5/9

28). 5/8

APPLIED FINITE MATHEMATICS 3rd Edition, 2016, Sekhon/Bloom Chapter 10: Markov Chains

Answers to Odd Numbered Homework Problems and Answers to all Problems in the Chapter Review Section

10.1 Markov Chains

 I). a. No
 b. No
 3). a. $\begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}$ b. 1/2
 c. 1/2
 d. 3/4

 5). a. 0.3
 b. 0.38
 c. 0.15
 d. 0.175

10.2 Applications of Markov Chains

10.3 Regular Markov Chains

10.4 Absorbing Markov Chains

1). a. 1 and 3
b).
$$\begin{bmatrix} 1 & 3 \\ 1/2 & 1/2 \\ 2/3 & 1/3 \end{bmatrix}$$
 c). $2/3$ d). $1/2$
3). a). $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ 6 & 0 & 4 & 0 & 0 \\ 0 & 6 & 0 & 4 & 0 \\ 0 & 0 & 6 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
b). Andre's solution matrix
 $\begin{bmatrix} 0 & 4 \\ 1 \\ 57/65 & 8/65 \\ 9/13 & 4/13 \\ 3 \\ 27/65 & 38/65 \end{bmatrix}$
c). $27/65$ d). $27/65$
5). a).
 $\begin{bmatrix} G & B & I \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 \\ 60 & .20 & .20 \end{bmatrix}$
b. I and II c. $[0.75 & 0.25]$ d. 0.75
T) G). $.445$ b). 245 c). 266
G). $.6041$ II) 30.22% drop cott, 69.78% Graduale.
12) $10/q$

10.5 Chapter Review – Markov Chains

1). No; no 2). 0.2: 0.3: 0.475 3). a. $\begin{bmatrix} 0 & 1 \\ 2/3 & 1/3 \end{bmatrix}$ b. 1 c. 2/3 4) a) No b) Yes 5) a).3 b).31 c).28 6) a) . 32 b) [2/3 1/3] 7) as [.36.34.30] b) [3/7 9/28 1/4] 8). a. SI and S2 **S**1 S2 b). c). 26/35 16/35 19/35 S3 26/35 9/35

d). 19/35

9). 2/7

10), 3/7

Applied Finite Mathematics 3rd ed. 2016 Sekhon/Bloom Chapter 11 Game Theory Answers to Odd Numbered Homeowrkk Questions and all Chapter Review Problems

11.1 Strictly Determined Games

- a. The game is strictly determined. Optimal strategy for the row player is to always play row 1 and never row 2. In other words, his strategy is [1 0]. The optimal strategy for the column player is to always to play column 1 and never to play column 2. We write it as 1 0]. When both players play their optimal strategy, the value of the game is 1.
 - c. The game has no saddle point, therefore, it is not strictly determined.

e. The game is strictly determined. The optimal strategy for the row player is to always play row 4, and never play any other row. We write his strategy as

 $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$. The column player's strategy is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The value of the game is 2.

3). a.
$$\begin{bmatrix} .05 & .10 \\ -.08 & -.12 \end{bmatrix}$$

b. The optimal strategy for the mayor is $\begin{bmatrix} 1 & 0 \end{bmatrix}$ and for his opponenent is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

In other words, both candidates should oppose abortion rights.

11.2 Non-Strictly Determined Games

- 1). a. The optimal strategy for the row player is $\begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$. The optimal strategy for the column player is $\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$. The value of the game is 0.
 - c. Optimal strategy for the row player is [2/7 5/7] . The optimal strategy for the

column player is $\begin{bmatrix} 6/7 \\ 1/7 \end{bmatrix}$. The value of the game is 16/7.

3). a. $\begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix}$

b. Optimal strategy for the row player is $\begin{bmatrix} 7/12 & 5/12 \end{bmatrix}$ The optimal strategy for the column player is $\begin{bmatrix} 7/12 \\ 5/12 \end{bmatrix}$. The value of the game is -1/12.

11.3 Reduction by Dominance

1).
$$\begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$$
, R = $\begin{bmatrix} 1/2 & 1/2 & 0 \end{bmatrix}$, C = $\begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$, The value = 1
3). $\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$, R = $\begin{bmatrix} 2/3 & 1/3 & 0 \end{bmatrix}$, C = $\begin{bmatrix} 2/3 \\ 0 \\ 1/3 \end{bmatrix}$, The value = 0
5). $\begin{bmatrix} 0 & -4 \\ -2 & 4 \end{bmatrix}$, R = $\begin{bmatrix} .6 & 0 & .4 & 0 \end{bmatrix}$, C = $\begin{bmatrix} 0 \\ .8 \\ .2 \\ 0 \end{bmatrix}$, The value = -0.8

7).
$$\begin{bmatrix} 2 & -8 \\ 1 & 5 \end{bmatrix}$$
, R = $\begin{bmatrix} 0 & 2/7 & 5/7 & 0 \end{bmatrix}$, C = $\begin{bmatrix} 0 \\ 0 \\ 13/14 \\ 1/14 \end{bmatrix}$, The value = 9/7

11.4 Chapter Review

1). a.
$$R = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
, $C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, value = 3 b. $R = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $v = -1$

c.
$$\mathbf{R} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
, $\mathbf{C} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, value=3 d. $\mathbf{R} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{v} = 3$
2). a. $\begin{bmatrix} -5 & 10 \\ 5 & 10 \end{bmatrix}$ b. $\mathbf{R} = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, value = 5 cents

3). a.
$$\begin{bmatrix} 5 & 30 \\ -5 & 0 \end{bmatrix}$$
 b. R = $\begin{bmatrix} 1 & 0 \end{bmatrix}$ C = $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, value = 5%
4). a. $\begin{bmatrix} .14 & .08 & .11 \\ .12 & .11 & .11 \\ .06 & .09 & .10 \end{bmatrix}$ b. $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, or $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, value = .11
5). a. $\begin{bmatrix} -.02 & .03 \\ .01 & -.01 \end{bmatrix}$ b. stocks = 2/7, CD's = 5/7

11.4 Chapter Review

6). a.
$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 \end{bmatrix}$$
, $\begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$, value = 0
b. $\begin{bmatrix} 5/9 & 4/9 \\ 7/9 \\ 7/9 \end{bmatrix}$, value = 10/9
c. $\begin{bmatrix} 5/7 & 2/7 \\ 1/7 \end{bmatrix}$, $\begin{bmatrix} 6/7 \\ 1/7 \\ 1/7 \end{bmatrix}$, value = 23/7
d. $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 \end{bmatrix}$, $\begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$, value = 1
7). 19/8; 14/9
8). \$11,000
9). $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 \end{bmatrix}$, $\begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$, v = 0
10). Pass = 9/25, Run = 16/25 11). $\begin{bmatrix} 10/19 & 9/19 \\ 9/19 \end{bmatrix}$, payoff = 9.58 fish
12). $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$, payoff = 2 points
13). a. $\begin{bmatrix} -3 & 3 \\ 2 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1/3 & 2/3 \\ 2 & 1 \end{bmatrix}$, $\begin{bmatrix} 4/9 \\ 0 \\ 0 \end{bmatrix}$, value = 1/3

b.
$$\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1/4 & 3/4 & 0 \end{bmatrix}$, $\begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix}$, value = 5/2
c. $\begin{bmatrix} 4 & 3 \\ -1 & 4 \end{bmatrix}$, $\begin{bmatrix} 5/6 & 0 & 1/6 & 0 \end{bmatrix}$, $\begin{bmatrix} 1/6 \\ 5/6 \\ 0 \\ 0 \end{bmatrix}$, value = 19/6

d.
$$\begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 3/4 & 1/4 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, value = 1

e.
$$\begin{bmatrix} 0 & 3 \\ 4 & -7 \end{bmatrix}$$
, $\begin{bmatrix} 11/14 & 0 & 0 & 3/14 \end{bmatrix}$, $\begin{bmatrix} 10/14 \\ 4/14 \\ 0 \\ 0 \end{bmatrix}$, value = 6/7

f.
$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 1/2 & 1/2 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 0 \end{bmatrix}$, value = 1