Cell Membranes

What does a cell need?

- Selective isolation from environment (plasma membrane)
- Energy (ATP) – [to be discussed in future lecture]
- Instructions (DNA)
- Machinery to carry out instructions and regulate processes (proteins)
- Compartmentalization of incompatible or specialized activities (organelles)

Cell Membrane Function

- Boundary between internal and external environments
- Selectively permeable - controls what goes in and out of cell or organelle
- Attachment to extracellular surfaces or to other cells (and organelles to cytoskeleton)
- Self or species recognition
- Cell to cell communication
- Lipid metabolism
- Localization of fixed or sequential processes

Membrane Phospholipid Bilayer

- Phospho-lipid bilayer forms the essential backbone of cellular membranes.

Synthesis of membrane lipids

- Phospholipid synthesis in smooth endoplasmic reticulum

- Distribution of membrane lipids from sER to other organelles – Three mechanisms

Heyer
Synthesis of membrane lipids

Types of membrane lipids:
• Phospholipids
  – Major component of lipid bilayer
• Cholesterol
  – Contributes to rigidity / flexibility of membrane
• Sphingolipids
  – Two fatty acids condensed onto a serine, instead of a glycerol
  – Usually with longer fatty chains than on phospholipids
  – Polar head may be modified with a phosphate or carbohydrate (glycolipid)
  – Rafts of sphingolipids migrate along the membrane

Plasma Membrane Proteins

• Phospholipid bilayer has proteins embedded in it.

Proteins can insert into lipid bilayer

• Protein domains can be hydrophobic or hydrophilic

Transmembrane proteins

Multiple hydrophobic domains contribute to intramembrane function

Functions of Plasma Membrane Proteins

- Gates
- Pumps
- Receptors
- Ligands
- Anchors
- Junctions
- Fixed enzymes
- Lipophilic enzymes

- Cell surface identity marker
- Cell adhesion
- Attachment to the cytoskeleton
**Fluid Mosaic Model of Membrane Structure**

- **Mosaic:** patchy, non-uniform distribution of proteins
  - Different regions or sides of the same cell may have different functions
- **Fluid:** distribution is dynamic and changeable

Proteins can move laterally within membrane.

**Importing proteins to organelles**

Membrane-enclosed organelles import proteins by one of three mechanisms. All of these processes require energy. The protein remains folded during the transport steps in mechanisms 1 and 3, but usually has to be unfolded in mechanism 2.

**Membrane Carbohydrates**

- As glycoprotein or glycolipid
- Added onto extracellular surface groups

**Movement of Molecules Across Membranes**

- **Passive Transport (Diffusion)**
  - Net movement of molecules from a region of high concentration to a region of low concentration
  - Caused by random (Brownian) movements of molecules
  - (Increase entropy)
  - Each type of molecule follows its own concentration gradient
  - At equilibrium, movement is equal in both directions
Cell Membranes

Random molecular motion eventually results in random distribution (equilibrium)

Factors that affect Rate of Diffusion

- Concentration gradient
  - Difference in concentration between two points
- Temperature (molecular movement)
- Permeability of the membrane / medium
- Available surface area of membrane
- Distance across which diffusion must occur
- Solvent state (gas > liquid > semisolid)

FICK’S LAW

Fick’s law of diffusion of a gas across a fluid membrane:

\[
\text{Rate of diffusion} = \frac{KA(P_2 - P_1)}{D}
\]

Wherein:
- \( K \) = a temperature-dependent diffusion constant.
- \( A \) = the surface area available for diffusion.
- \( (P_2 - P_1) \) = The difference in concentration (partial pressure) of the gas across the membrane.
- \( D \) = the distance over which diffusion must take place.

Increased exchange rate by increased surface area

- **Microvilli**

Concentration

- Number of solutes in a given volume
- Examples
  - Moles per liter (molar = \( M \))
  - Grams per 100ml (g%)
  - Nanograms per milliliter (ng/ml)
  - Parts per thousand (ppt)
- Osmolarity:
  - the sum of all solutes in a given volume
  - in moles per liter (Osm)

Simple (non-selective) diffusion across cell membranes

Nonpolar solutes dissolve through membrane
- \( O_2 \)
- \( CO_2 \)
- Fat soluble hormones (steroids)
- Urea
- Fat soluble vitamins
- Other small, fat soluble molecules
Relative permeability of a phospholipid bilayer

Osmosis: simple diffusion of the solvent (water)

Water diffuses according to its concentration gradient

• ↑ Osm [•] [water]
• Osm [•] [water]
• Osmosis can generate force (osmotic pressure)

Semi-permeable membrane

Osmolarity & Osmotic Pressure

• Osmolarity (Osm):
  the sum of all solutes in a given volume (moles per liter)
  • 1 M glucose solution = 1 Osm
  • 1 M glucose/1 M fructose/1 M ribose solution = 3 Osm
  • 1 M NaCl solution = 1 M Na⁺/1 M Cl⁻ = 2 Osm
• Isosmotic: two solutions with the same Osm
• Hyposmotic: a solution with a lower Osm than another
• Hyperosmotic: a solution with a higher Osm than another
• Remember: ↑ Osm [•] [water]
  ↓ Osm [•] [water]

Osmolarity & Osmotic Pressure

• Osmotic Pressure (P_{Osm})
  – Force generated by osmosis
  – Measure of the tendency to take on water by osmosis
• Isotonic: two solutions with the same P_{Osm}
• Hypotonic: a solution with a lower P_{Osm} than another
  – I.e., loses water to the other solution
• Hypertonic: a solution with a higher P_{Osm} than another
  – I.e., takes water from the other solution
• For an isosmotic solution to be isotonic, the membrane must be equally permeable (or equally impermeable) to all solutes
  – All isotonic solutions are isosmotic.
  – But not all isosmotic solutions are isotonic.

Osmosis and Water Balance

“Cell”
0.03 M sucrose
0.02 M glucose
0.05 Osm

“Cell”
0.01 M sucrose
0.01 M glucose
0.01 M fructose
0.03 Osm

Hypotonic to “cell”
**Cell Membranes**

**Osmotic Swelling**
- Mechanisms to resist excessive swelling in hypotonic environments

**Selective permeability**
- Except for water and small nonpolar solutes, permeability of cell membranes is **selective and regulated**.
- Permeability determined by **transporter proteins**.
  - Channels and carriers are **solute specific**.
  - If no transporter, that solute cannot cross membrane
- (Artificial membranes are only semipermeable —i.e., only discriminate based upon molecular **size**.)

**Types of cellular transport**
- **Passive transport**: driven by Brownian motion
  - Simple diffusion & osmosis
  - Facilitated diffusion (carrier mediated passive transport)
- **Active transport**: requires chemical energy (ATP)
  - Carrier mediated
  - Can transport against concentration gradient

**Carrier mediated transport**
- Transporters are **binding proteins**
  - subject to
    - Specificity
    - Competition
    - Saturation

**Facilitated Diffusion**
- Carrier-mediated **passive transport** —“gates” & “channels”
  - Movement from high to low concentration, only when gate is open...
  - Gate may open/close in response to
    - Chemical signal
    - Cell voltage
    - Mechanical distortion

**Facilitated Diffusion**
- Glucose channel
  - May be gated
    - Most tissues
    - Opens in response to insulin
  - Or ungated
    - Brain tissue
Facilitated Diffusion

- Multidrug Transporter Mechanism

Osmosis may be both simple and facilitated

Aquaporins (water channels) speed water movement.

Active Transport

- Carrier mediated – “pumps”
- Active: requires ATP
- Can force movement against concentration gradient
- Creates concentration gradient
- (creates order/ decreases entropy)

Active Transport

1. Solute binds to carrier protein
2. Binding triggers ATP hydrolysis, transfers phosphate to carrier
3. Phosphorylation produces change in shape of carrier
4. Change in shape causes carrier to move solute

Difference in concentration is maintained by selective permeability of membrane

- Cytosol relatively high in K⁺, protein, organic-phosphates
- Low in Na⁺, Ca²⁺, Cl⁻

Difference in concentration is maintained by selective permeability of membrane

- Cytosol relatively high in K⁺, protein, organic-phosphates
- Low in Na⁺, Ca²⁺, Cl⁻
Some carriers can transport two different types of solutes simultaneously

**Symport:** same direction  
**Antiport:** different directions

---

**Na⁺/K⁺ ATPase:**
very important active transporter

- Antiport  
  - Pumps 3 Na⁺ out  
  - Pumps 2 K⁺ in

- Na⁺/K⁺ ATPase used to:
  - Maintain ion gradients  
  - Create electrical potential (inside of cell negatively charged relative to outside).

---

**How Na⁺/K⁺ ATPase works**

- a. Na⁺ binds
- b. ATPase changes shape
- c. Na⁺ is released
- d. K⁺ binds
- e. K⁺ is released

---

**Cells as Electrical Batteries**

- **Electrogenic pumps:**  
  - Active transport chemical gradients of ions  
  - electrical gradients.

- Electrical gradient produces a membrane potential.

- Inside of the cell is negative relative to the outside of the cell.

---

**Cells as Electrical Batteries**

- **Electrogenic pumps:**
  - In animal cells, primarily the Na⁺/K⁺ pumps.
  - In plants, fungi, & bacteria, primarily proton pumps.

---

**Cotransport, or secondary active transport**

- Carrier protein does not directly use ATP
- But ATP required to create the gradient by other pumps
- Solute “A” transported by diffusion with the created gradient
- Solute “B” moved against gradient by "piggy-backing" with solute “A”
- Example: Na⁺ and glucose symport  
  - Na⁺ diffuses  
  - Glucose actively transported
Cell Membranes

Cotransport of Na\(^+\) and glucose

- Both solutes required for transport

Active Transcellular Cotransport

Aka, Secondary Active Transport, or Symport

H\(^+\)/Sucrose symport

- Essential in plants
  - Sucrose is their primary circulating energy substrate

Bulk (vesicular) transport

- Endocytosis
- Exocytosis

Bulk Transport: Endocytosis

- **Endocytosis**: Transport of molecules or large particles into a cell using a vesicle
  - Phagocytosis: cell eating
  - Pinocytosis: nonspecific cell drinking
  - Receptor mediated endocytosis: transport of specific molecules (ligands)

Bulk Transport: Exocytosis

- **Exocytosis** — excretion / secretion

Active Transport (Requires energy)
**Cells Eat and Spit Out: Endo- and Exocytosis**

Paramecium

White blood cell

**Cell Surface**

- Carbohydrates (on glycoproteins and glycolipids) give membranes “sidedness”
  - Membrane-bound carbs for cell recognition
  - Secreted glycoproteins coat outer surface of cell

**Cell Surface Junctions**

- Tight
  - Restrict fluid passing around cells
- Anchoring
  - (desmosomes)
  - Join adjacent cytoskeletons
- Communicating (gap)
  - Allow passage of small molecules
  - Esp. in
    - Plants
    - Embryos
    - Electrochemically coupled cells

**Extracellular Matrix**

- No walls (animal cells)
- Matrix or basement membrane of secreted proteins/glycoproteins

**Extracellular Matrix**

- Major matrix proteins: Collagen and Elastin

  - Collagen is a triple helix formed by three extended protein chains that wrap around one another. Many rodlike collagen molecules are cross-linked together in the extracellular space to form collagen fibrils that have the tensile strength of steel.

  - Elastin polypeptide chains are cross-linked together to form rubberlike, elastic fibers. Each elastin molecule uncoils into a more extended conformation when the fiber is stretched and will recoil spontaneously as soon as the stretching force is released.