I. Water and Solute Uptake by Cells

- **Passive Transport** (Diffusion)
 - Net movement of molecules from a region of high concentration to a region of low concentration
 - Caused by random (Brownian) movements of molecules
 - (Increase entropy)
 - Each type of molecule follows its own concentration gradient
 - At equilibrium, movement is equal in both directions

- **Osmosis**: simple diffusion of the solvent (water)
 - Water diffuses according to its concentration gradient
 - \(Osm \rightarrow |water| \)
 - \(Osm \rightarrow |water| \)
 - Osmosis can generate force (osmotic pressure)

II. Local Transport

III. Long Distance Transport

IV. Gas Exchange
Exchange & Transport in Plants

Water and Solute Uptake by Cells
- Hypotonic solution: Plant cells flaccid
- Isotonic solution: Normal
- Hypertonic solution: Plant cells turgid

Water Potential (Ψ)
- Osmotic pressure pulls water to the right:
- Osmotic potential (ΨS): solution on left has potential energy to push water to the right
- If ΨS & ΨP are equal but opposite → no net flow
 → Ψ = ΨS + ΨP = 0

Selective permeability
- Except for water and small nonpolar solutes, permeability of cell membranes is selective and regulated.
- Permeability determined by transporter proteins.
- Channels and carriers are solute specific.
- If no transporter, than that solute cannot cross membrane
- (Artificial membranes are only semipermeable — i.e., only discriminate based upon molecular size.)
Types of cellular transport

• **Passive transport**: driven by Brownian motion
 – Simple diffusion & osmosis
 – Facilitated diffusion (carrier mediated passive transport)
• **Active transport**: requires chemical energy (ATP)
 – Carrier mediated
 – Can transport against concentration gradient

Water and Solute Uptake by Cells

- **Water and Solutes — Local Transport**
 - Tissue compartments & membranes

 - Cell wall
 - Cytosol
 - Vacuole
 - Plasmodesma
 - Tonoplast
 - Plasma membrane
Water and Solutes — Local Transport

- **Transmembrane Transport**: from cell-to-cell across plasma membranes (SLOW!)
- **Symplastic Transport**: from cell-to-cell through plasmodesmata
- **Apoplastic Transport**: around cells through porous cell walls

Lateral transport routes

<table>
<thead>
<tr>
<th>Transmembrane</th>
<th>Apoplastic</th>
</tr>
</thead>
</table>

Water and Solutes — Long Distance Transport

- **Via xylem and phloem**
- **Bulk Flow**: movement of fluids through vessels
- **Must generate big pressure differences**
- **Where’s the pump?**

Water and Solutes — Xylem Transport

- **Apoplastic movement of xylem sap** — **pushing**
 - **Root Pressure**: active transport in roots
 - Minerals accumulate in xylem
 - Water follows
 - Pressure
 - Limited to 1–2 m, if at all
 - **Guttation**: root pressure pushes water out leaves

Water — a polar molecule

- **Polar**: one end slightly positive (δ⁺), the other end slightly negative (δ⁻)
- **Cohesion**: water molecules stick to each other
Water — a polar molecule

- **Adhesion (wetting):**
 - Water molecules are attracted to and stick to other polar molecules.
 - Like the cellulose of xylem walls.
- **Capillary action:**
 - "Lead" water molecules attracted to "dry" cellulose for adhesion.
 - Pull rest of water along by cohesion.

Water and Solutes — Xylem Transport

- **Pop quiz!**
 - What are the big pipes called?
 - What are the smaller pipes called?

Regulating Transpiration

- Guard cells turgid: stoma open
- Guard cells flaccid: stoma closed

Transpiration: the loss of water vapor from the stomata of leaves.
Water and Solutes — Phloem Transport

- Movement of phloem sap — pushing only

Translocation: moving sugar from sources to sinks

![Image of phloem transport](image)

Symplastic Flow
- Solute [osmotic] potential (Ψ_s) creates pressure gradient
 - Source tissue
 - Photosynthesis or starch breakdown $\rightarrow \uparrow$ sucrose [solute] in phloem sap solution $\rightarrow \downarrow \Psi_s$ in phloem
 - Sink organ
 - Starch synthesis $\rightarrow \downarrow$ sucrose [solute] in phloem sap solution $\rightarrow \uparrow \Psi_s$ in phloem
- Bulk flow from $\uparrow \Psi_s$ to $\downarrow \Psi_s$ in phloem, from source to sink

Gas Exchange

Why must plants do gas exchange?

Photosynthesis (chlorenchyma):

$$\text{CO}_2 + \text{H}_2\text{O} + \text{energy} \rightarrow \text{CH}_2\text{O} + \text{O}_2$$

Respiration (all tissues):

$$\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{energy}$$

Photosynthetic mesophyll (chlorenchyma): cells are inside the leaf

- epidermis
- mesophyll
- epidermis

Photosynthetic mesophyll (chlorenchyma): cells are inside the leaf

- Need to deliver adequate CO$_2$ from air to chlorenchyma
- But exposure to dry air causes water loss
Air: composition & partial pressures
- N\textsubscript{2}: 78%; P\textsubscript{N\textsubscript{2}} = 0.78 atm
- O\textsubscript{2}: 21%; P\textsubscript{O\textsubscript{2}} = 0.21 atm
- CO\textsubscript{2}: 0.03%; P\textsubscript{CO\textsubscript{2}} = 0.0003 atm

Other gases bring total up to 1 atmosphere.

Gas Exchange & Water Loss
- High demand for CO\textsubscript{2} in leaves in daylight; but water loss is a big problem.
- Cuticle limits water loss through epidermis.
 - (\uparrow \text{H}_2\text{O}/\downarrow \text{CO}_2): Stomata open to let air circulate.
 - (\downarrow \text{H}_2\text{O}/\uparrow \text{CO}_2): Stomata close to limit water loss.

Plants have tricks to balance gas exchange & water loss.
- Xerophytes: plants adapted for low-moisture habitats
 - Desert, windy, seashore
 - Oleander: stratified epidermis & stomata in hairy pits.

Gas Exchange & Water Loss
- Shoot epidermis of the epiphytic cactus Rhipsalis
 - Surface view: The crater-shaped depressions with a guard cell each at their base can be recognized.
 - Cross-section: The guard cells are deeply countersunk, the cuticle is extremely thick.

Gas Exchange & Water Loss
- Layer of dead, air-filled cells in epidermis
 - Air-pockets are silvery and insulating → keep leaves cool
 - Living tissues displaced from surface → reduce moisture loss
 - Trichomes make hairy surface
 - Dense hairs trap humid air

Gas Exchange & Water Loss
- No leaves!
 - Cactus
 - "Leaf" primordia → spines
 - Photosynthetic stem
 - Ocotillo
 - Leafless most of year
 - Small, short-lived leaves in rainy season

Heyer
Gas Exchange & Water Loss
- Some plants store CO₂ at night so they can keep stomata closed all day.

What about Oxygen?
- Lenticels: elongated parenchyma creating air gaps in the peridermal cork
 - permit gas-exchange between the atmosphere and the metabolically active cells below the bark
 - Often develop under site of stoma in primary epidermis

What about Oxygen?
Special issues for submerged plants

<table>
<thead>
<tr>
<th></th>
<th>5°C</th>
<th>35°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>% O₂ in air</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>% O₂ in water</td>
<td>0.9%*</td>
<td>0.5%*</td>
</tr>
<tr>
<td>O₂ in water/air</td>
<td>1/25 X</td>
<td>1/40 X</td>
</tr>
</tbody>
</table>

* At equilibrium with air. Stagnation may decrease to 0.

What about Oxygen?
Mangroves: Pneumatophores carry O₂ to roots in mud

What about Oxygen?
Aerenchyma Tissue

Some aquatic plants need special tricks for oxygen.