
Pollution

- Contamination by
 - Redistribution/concentration of natural compounds
 - Synthetic (xenobiotic) compounds

• Definition: XENOBIOTIC

BTEX

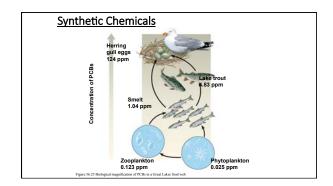
- a chemical that is foreign to the biosphere i.e. is not produced by a natural biological or abiotic source
 Also called anthropogenic, man-made, synthetic, pollutant, recalcitrant, persistent, and toxicant
 Distinguishes between quantity and scale Gordon Gribble e, studied the natural occurrence of organohallogens (chlorbenzoates in fungi) this is different from large scale chemical processes for the production of PCBs
- BTEX is an acronym for the volatile organic compounds (VOCs): benzene, toluene, ethylbenzene, and sylene.
 BTEX compounds are among the most abundantly produced chemicals in the world, created and used during the processing of petroleum products and during the production of consumer goods such as paints and lacquers, thinners, rubber products, adhesives, inske, cosmetics and pharmaceutical products.
 The primary man-made releases of BTEX compounds are through emissions from motor vehicles and aircrafts, and cigarette smoke. Benzene is a known carcinogen; all contribute to photochemical smog and respiratory of lesses.

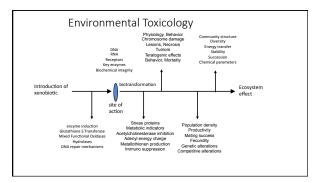
 Natural sources of BTEX compounds include gas emissions from volcanoes and forest fires.

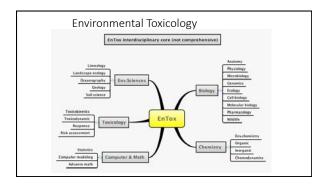
Environmental Toxicology

• Studies toxicants that come from or are discharged into the environment, and:

Health effects on humans Effects on animals
Effects on ecosystems

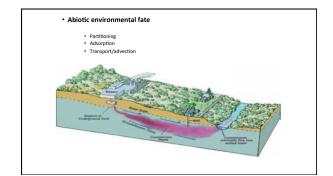

• Animals are studied:


For their own welfare To warn of possible effects on humans


Environmental Toxicology

- Persistent toxins
- Fat soluble or skeletal
 Bioaccumulate in individuals
 Biomagnify in food chains
- Neurotoxins
 - Disrupt neural function
 Alter behaviors
- Endocrine disruptors
 Interfere or imitate hormone action
 Perturb reproduction and/or development
- Mutagens
 Damage DNA
 Carcinogenic
- Teratogenic
 Developmental disorders & birth defects

Toxin	Sources / comments	Risks
PCBs (polychlorinated biphenyls)	Banned industrial chemical, still persists after decades.	Cancer, impaired fetal brain development
Pesticides	60% of herbicides, 90% of fungicides, 30% of insecticides known to be carcinogenic	Cancer, Parkinson's disease, miscarriage, nerve damage, birth defects, blocking nutrient absorption
Phthalates	Leach from soft plastic food storage containers, etc. Used to stabilize artificial fragrances.	Endocrine disrupter
VOCs (Volatile Organic Compounds)	Decompose to form ozone	Cancer, eye and respiratory tract irritation, headaches, dizziness, visual disorders, and memory impairment
Dioxins	Form during combustion of organic wastes and fuels	Endocrine disrupter; carcinogenic, contact irritant; liver damage
Heavy Metals esp. mercury, lead, arsenic, cadmium, aluminum	Industrial sources; mining; concentrated by over-irrigation practices	Cancer, developmental & neurological disorders; cardiovascular damage; impair blood cell production; block enzyme activity
Chlorine & Chloroform	Industrial processing. Leach from synthetic materials.	Cancer, reproductive damage & birth defects, neurological disorders, liver and kidney damage.


Environmental toxicology depends on

 Lab work
 Effects of toxicants on biochemistry and physiology

 Field work
 Field observations of reproduction and survival in polluted vs. non-polluted sites

 Modelling of fate and transport of toxicants in the environment i.e. exposure and risk assessment

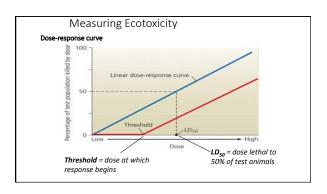
 Static models
 Strategic models
 Strategic models
 Strategic models
 model of a specific aspect of a system
 Testable models
 model makes predictions that can be tested in the field or laboratory

Biotic environmental fate

The interaction of a senobiotic at the cite of action in an organism is often 'molecular happenstance' i.e. senobiotic mimic compounds which are naturally found in species that they affect - hormone mimics

Bioaccumulation

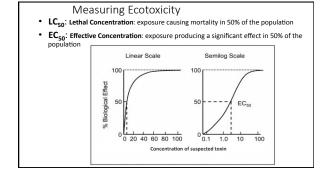
The storage of a compound in fatty tissue of an animal
Result of food chain / trophic levels

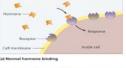

Biotransformation

Metabolic processes, mainly by environmental bacteria, that after the structure and toxicity of a compound

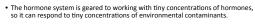
Biodegradation

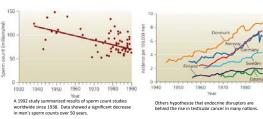
Breakdown of a xenobiotic to CO₂ and water



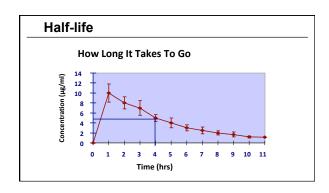

- Physiological and behavioral effects

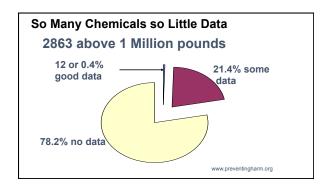
 Standard tool for assessing toxicological effects on populations

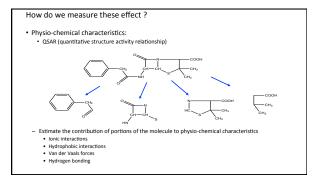

 Tissue lesions
- Tumors
- Reproductive success



Endocrine Disruption




- Some chemicals, once inside the bloodstream, can "mimic" hormones.
- If molecules of the chemical bind to the sites intended for hormone binding, they cause an inappropriate response.
- Thus these chemicals disrupt the endocrine system.



Toxicology Exposure & Absorption etabolism How The Body Breaks It Down What It Turns Into How Fast It Does It

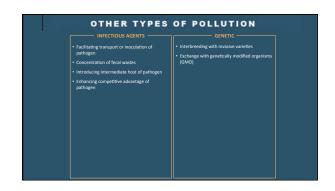
Mixtures of Toxicants

- Substances may interact when combined together.
- \bullet Mixes of toxicants may cause effects greater than the sum of their individual effects.

These are called synergistic effects.

• A challenging problem for toxicology: There is no way to test all possible combinations!

 $(And\ the\ environment\ contains\ complex\ mixtures\ of\ many\ toxicants.)$


- · Population effects

 - pulation effects

 Population age structure xenobiotics often exert a stronger effect on juveniles => a shift in age structure might indicate that a population is not doing well, because it is affected by a xenobiotic

 Shift in bacterial communities contamination reduces bacterial diversity; bacterial numbers often increase because the contaminant is food for some while it is toxic for others
- Community effects
 Species diversity
 Abundance
 Distribution
- Ecosystem effects
 Productivity
 Trophic level structure
 Stability

OTHER TYPES OF POLLUTION

