are essentially the same. For example, the imtervals {0, 1},
00, 7} and {—7 /2, 772} are 4l fnite open intervals. They are
Aomepmorphic. By definition. intervals 5 and 5 are homeo-
moephic if there is a function § from 7; ento I; that has an in-
verse with f and = both being continuous. A homeomer-
phism from (0, 1) to (0, 7) is fix) = 7x. Show that this s a
homeomorphism by finding its inverse and verifying that both
are continwous. Find a homeomorphism from ©0.7) o
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could move the Interval (0. %) to produce the interval
{—m /2, 7/21.) This will take some thinking, but vy to find a
homeomorphism for any two finite open intervals {z, &) and
ie, d). It remains o decide whether the iaterval {—oo, o) is
different because it Is infinite or the same because it is open. In
fact, (—oo, o¢) is homeomorphic to (—x /2, 7/2) and hence to
all other epen intervals. Show that tan~—! x is a homeomor-
phism from {—00, 00) to [—7 /2, 7 /2).

i—m /2, m/2). (Hint: Sketch a picture, and decide how you

THE HYPERBOLIC FUNCTIONS

The Gateway Arch in Saint Louis is one of the most distinctive and recognizable architee-
tural structures in the United States. There are several surprising features of its shape. For
instance, is the arch taller than it is wide? Most people think that it is taller, but this is the
result of a common optical illusion. In fact, the arch has the same width as height. A slightly
tess mysterious illusion of the arch’s shape is that it is not a parabala. lts shape corresponds
to the graph of the hyperbolic cosine function {called a catenary). This function and the
ather five hyperbolic functions are introduced in this section.

You may be wondering why we need more functions. Well, these functions are not en-
tirely new. They are simply common combinations of exponentials. We study them because
of their usefulness in applications (e.g., the Gateway Arch} and their convenience in solv-
ing equations {in particular, differential equations).

The hyperbaolic sine function is defined by

The Gateway Arch, St. Louis, MO ' A
sinhx = ———\
L

for all x £ {—oC, 0C). The hyperbolic cosine function is defined by

&4

coshx =
-y #
2

again for all x € (—ox, 00} . You can easily use the preceding definitions to verify the
impertant identity
b ) 001

cosh™w — ginh"w =1, 9.13
for any value of u. (We leave this as an exercise.) In light of this identity, notice that
if x = cosh # and vy = sinh #, then

' 2 2 R I

g ¥ —cosh " — sinh® 2 = 1,

which you should recognize as the equation of a hyperbola. This identity is the sowce of the
name “hyperbolic™ for these Tunctions. You should also notice seme parallel with the frigono-
metric functions cos x and sinx. This will become even more apparent with what follows.
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The remaining four hyperbolic functions are defined in terms of the hyperbolic sine
and hyperbolic cosine functions. in a manner analogous o their trigonometric counterparts,
That is, we define the hyperbolic tangent function tanh x, the hyperbolic cotangent func-
tion coth x, the hyperbolic secant function sech x and the hyperbolic cosecant function
csch x as follows:

sinh x coshx
tanhxy = . cothx = —
coshx sinh x
I 1
sechx = , utschxy = — ;
coshx sinhx

These functions are remarkably easy to desl with. and we can readily determine their
behavior, using what we have already learned about exponentials. First, note that

dx 7

d i 75 — g F o
—si%x:;( - ):E > = coshx.

Similarly, we can establish the remaining derivative fonmulas:

— cosh x = sinh x, — tanh x = sech? x
ax dx
] 5 d )
—oothx = —esch®*x, —sechx — —sechxtanh x
X dx

d
and —cschx = —cseh x coth x.
dx

These are all elementary applications of earlier derivative rules and are left s exercises. As
it turns out. only the first three of these are of much significance,

§ i Hyperbolle Fanction

Compute the derivative of f{x) = sinh®(3x).
Bolution From the chain rule. we have

"'._d.g.z‘-n“—_d_. o
fixy= a— sinh™(3x) = -d_.z?[uﬁh(‘ir}]

d
= 2 sinh{3x) —[sinh{3x}]
dx

d
= 2sinh{3x) coshi3x) I(Bu::}

= 2 sinh{3x) cosh{ 331 )

= & sinh{3x) cosh{3x).

B
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cample 9.2 An Integral In a Hypos Funeiion

MNaotice that you can evalnate this integral using a substitution. i we let
3
W =x", we getdu = 2x dx and so,

1-f 3
f & r:m:h(xj} dx = — j cosh{x "} (2x) dx

=

cosh 2 i

j 3
= —fmshudu = ;;sinhza +c

ks

[ 8

sinh{x®3 + .

I
3] s

t

For f{x)} = sinh x, note that

e
x)=sinhy = ———— "
flx)=s et #xal

d

—e* {:wﬁ ifx =0

This is left as an exercise. Forther, since f'{x} = coshx = 0, sinhx is increasing for all x.
Mext, note that f7{x) = sinhx. Thus, the graph is concave down forx = 0 and concave up
for x = 0. Finally, you can easily verify that

Iim sinhxy = n¢  and lim sinhx = —o0.
X0 X——D3

It is now a simple matter to produce the graph seen in Figure 6.45. Similarly, you should be
able to produce the zraphs of coshx and tanh x seen in Figures §.46a and 6.46b. respec-
tively. We leave the graphs of the remnining three hyperbolic functions to the exercises.
If a flexible cable or wire (such as a power line or telephone line) hangs between two
towers, it will assume the shape of a catenary curve {derived from the Latin word catena
meaning “chain™}. As we will show at the end of this section. this naturally cccurring curve
corresponds to the graph of the hyperbolic cosine function f{x) = acosh{%).

b 104 ; ¥
\ s 1
| s+ / ESUUNSISISCIES N N
!i! f o
T 17
| ! I
1 g4 i L i Il 1 i 1 il 1 1 o
‘2}‘ 4 / —.:t. t _.,_:f?r_' } t ]2 t -1 i)
X o F /1
— e ¥
4 1
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v =sinh~! 1.

" For the catenary f{x) = 20&::}511(%}, for —20 < x < 20, find the amount of sag in the
cable and the arc length.

Solution

From the graph of the function in Figure 647, it appears that the mini-
mum value of the function is at the midpoint x = 0, with the maximum at x = —20 and
x = 20, To verify this ohservation. note that

fi{x) = sinh (55)

and hence, (03 =0, while F(x) < 0 for x ~ 0 and f'{x) > 0, for x > 0. Thus, f
decreases to a mindmum at x = 0. Further, f{—20) = f¢20) = 30.86 is the maximum
for —20 < x < 20and F{0) = 20, so that the cable sags approximately 10.86 fest. From
the usual formula for arc length, developed in section 54, the length of the cable is

@ LI ;"—“‘_—'_
L= f 1P dx = j /1 + sinh? (,}i) dx.
—90 20

Notice that from (9.1}, we have
I+ sinh® x = cosh” x.
Using this identity, the arc length integral simplifies to
o2 R BRI 220
i x 1 X

== i 3 : E e 85 = g e ., 4

L ]—‘Zu‘t’l 1 + sinh (26)65.1’ J_za cosh (Ei}) dx

= 20[sinh{1} — sinh{—173]

¢ x i)
= Hisinh [ — |
20 /|

= 40sinh{1) == 47 feat.

The Inverse Hyperbelic Functions

You should note from the graphs of sinhx and tanh x that these functions are one-to-one.
Also, coshx is one-to-one for x = (. Thus, we can define inverses for these functions, as
follows. For any x € (—00, 00}, we define the inverse hyperbolic sine by

v =sinh~! x if and only if sinh y = x.

For any x > I, we define the inverse hyperbolic cosine by

y =cosh™!x ifand onlyifcoshy =x, and y > 0.

Fimnally, for any x € {(—1, 1}, we define the inverse hyperbolic tangent by

s — tanh™! x  if and only if tanh v = x.
Inverses for the remaining three hyperbelic functions can be defined similarly and are left
to the exercises. We show the graphs of v = sinh ™' x. Fi— cosh™' x and P tanh™ x in

Figures 6.48a, 6.43b and 6.48¢, respectively. {As usual, you can obtain these by reflecting
the graph of the orizinal function through the line v = x.)

McGraw-Hil Companies, Inc. all rights reserved.




Section 6.9 The Hyperbolic Functions 547

¥ We can find derivatives for the inverse hyperbolic functions using implieit differentia-
4 i tion, just as we have for previous inverse functions. We have that
+ y=sinh™! x if and only if sinhy = x. {9.2)

d
s Iy — ~—X
g T &

or

dy
cosh yd' =TI
fqy

3‘ Solving for the derivative, we find
A gl
E 5.1 }[ dx ecoshy /11 cinh? y M+ xZ
; T il since we know that
: =t —x 2 2
wff/fﬂ i % cosh® ¥ —sinb™ y = 1,
§; —g.l } from (9.1 That 1s, we have shown that
R T
Es}nh x= ﬁ

Note the similarity with the derivative formula for sin™' x. We can likewise establish
derivative formulas for the other five inverse hyperbolic functions, We list these below for
the sake of completeness.

- JE 1 d 23 i

& sinh” " x = ﬁ ;;—msh x — ﬁ
gmﬂh_lxz 1—£_.Tg ;%ifmh"lxz I—lxg‘

Il i ~1 d Ly -1

g sech™ x = ﬁ 5 gsgh "= m

Before closing this section, we wish to point cut that the inverse hyperbolic functions
have a significant advantage over earlier inverse functions we have discussed. It turns out
that we can solve for the inverse functions explicitly in terms of more elementary functions.

2 z B - pprae—
v raroeis Doy an Inyeise

He Function

Find an explicit formula for sinh™! x.
Sedution Recall from (9.2) that

y=sinh'x if and cnly if sinhy = x.
Using this definitien, we have

A=smhy—=——, (9.3}
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Farces acting on a section of
hanging cable.

We can solve this equation for y, as follows. First, recall also that

f:.v ...I,. g_}'

coghy = ——F——.

Now, notice that adding these last two equations and vsing the identity (9.1}, we have
&' = sinh y + coshy = sinh ¥ + 'cosh? »

=sginhy+ xfm
=x+vx+ 1,
From {9.3}. Finally, taking the natural logarithm of both sides. we get
y =1In(e") = In(x + /x2+ 1).
That is, we have found a formula For the inverse hyperbolic sine function:

sinh ™! x = in(x + 224 i)_

Similarly, we can show that forx > |,

cosh™tx = }n{x + vjx? — i)

tanh ™' x = 111:1(.E +X).

2 =
;

andfor—1 = x < 1,

We leave it to the exercises to derive these formulas and corresponding formulas for the
remaming inverse hyperbolic functions. There is little point in memerizing any of these
formulas. You need only realize that these are alwavs available by performing some
elementary algebra

Drerivation of the Catenary

We close this section by deriving a formula for the catenary. As you follow the steps, pay
special attention to the variety of caloulus results that we use,

In Figure 6.49, we assume that the lowest point of the catenary curve is located at the
origin. We further assume that the cable has constant linear density p {(measured in units of
weight per unit length) and that the function ¥ = f{x) is twice continuously differentiable.
We focus on the portion of the cable from the origin to the general point (x, ¥) indicated in
the figure. Since this section is not moving, the horizental and vertical forces must be bal-
anced. Horizontally, this section of cable is pulled to the left by the tension H at the origin
and is pulled to the right by the horizental component T cos# of the tension T at the point
{x. ¥). Netice that these forces are balanced if

H = Teosd, 9.4y
Vertically, the section of cable is pulled up by the vertical component T sin@ of the tension.
The section of cable is pulled down by the weight of the section. Motice that the weight of
the section is given by the product of the density p (weight per unit length) and the length
of the section. Recall from your study of are length in Chapter 5 that the are length of this
section of cable is given by fi /1 + LF"(1) P dt. So, the vertical forces will balance if

Tsin® =p f i3 LFtio® de. (9.5}
(1]
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We can combine equations (9.4) and (9.5) by multiplying (9.4) by tan® fo get Htané =
T sin @, then using {9.5) to conclude that

x —_—
Hiand = p f [P de.
]
Naotice from Figure 6.49 that tan & = {2}, so that we have

Hf'(x) = p f I+ @R dr.
i

Differentiating both sides of this equation, the Fundamental Theorem of Calculus gives os
Hf"(x) = py/ T+ [P (9.6)

Now, divide both sides of the equation by H and nams b = f}} Further, substitute u#{x) =
F'(x). Equation {9.6) then becomes

w'ix) = by 1 +[u{x) ],
which you should recognize as a separable differential equation. Putting together all of the
i terms and integrating with respect to x gives us

™ ! - Fod g
:ﬂ {x}dx = j bdx.
Jo I+ [wx)F

You should recognize the integral on the left-hand side as sinh ™ {u {2}, so that we now have

sinh™! (u{x)) =bx+c.
Notice that since f(x) has a minimum at x = 0, we must have that u{0) = (D) = 0. 5o,
taking x=1D0, we get ¢ = Sinh_l{ﬂﬁ = 0. From sinh-l{a.{xj} = bhx, we obtain u{x)=
sinh{bx). Now, recall thut u{x) = f'{(x), sothat {'{x) = sinh(bx). Integrating this gives us

Fix)y= f sinh{bx) dx

= 4 cosh{bx) +c.

Finally, recall that () = 0 and so, we must have ¢ = -‘51.. This leaves us with f{x) =
‘rf; msh(bxj—}}‘ ~ Finally, writing a= %, we obiain the catenary equakion
fiz) = acash{z—:) —a.

1. . Compare the derivatives and integrals of the trgono- advantageous to assign special names to these functions instead
g metric funclions to the dedvatives and integrals of the of leaving theim as exponentials.
hyperbolic functions. Also note that the trigenometric [dentity
cos” x + sin? x = 1 differs only by a minus sign from the cor- 3. & Briefly describe the graphs of sinh x, coshx and tanh x.
responding hyperbolic identity cosh™ x — sinh™x = 1. = Which simple polvnomiats do the graphs of sinhx and
coshx resemble?
2.

really new functions. They provide names for useful
combinations of exponential functions. Explain why It Is

The catenary (hyperbolic cosine) is the shape assomed by
1 hanging rable because this distributes the weight of the
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cable mest evenly throughout the cable. Knowing this, why was
irgmart to build the Gateway Archin this shape? Why would vou
suspect that the profile of an egg has this same shape?

In exercises 5-12, skeich the graph of each function.

3. cosh2x &, sinh3x

7. tanh<dx 8. tamhx?

9. eoshlZysinh 2y 10. e*sinhx
1L xsfoh2x 12. z%sishx

Iy exercises. 1324, find {he derivative of each function.

13. eoshdx 14. coshx?
15. sinh2x 16, sinh X
17. tamh4x 18, tanhx?
19. cosh~!2x 20, sinh™' 3x
1. x*sinh2x 22, x%sinhx
23, tanh~) 4x 24. sinh~!x?

In exercises 25-36, evaluate each integral.

25, j coshéxdx 26. j sinh2xdx

27, j tanh 3x dx 28. j sech? 1 dx
1 adx —dx I 2x — 2%
g g e
22, f e 30. f Ll
o 2 i, E T
1 3 3 T 2x
31. j —dx 32. ./ —dx
] Sl x2 A xd
33. j cos x sinhisin xidx 34, j xecosh(x?) &x
t ; i1 coshax
35, f cosh x 57 7 gx 35, —— dx
Jo s 34 sinh2x
. d i Q.
37. Derive the formulas s coshx = sighx and Et:mhx =
o L3

5
sech” x.

33. Derive the formulas for the derfvatives of coth x, sech v and
cschx

39, Using the properties of exponential functions, prove that

sinhxy =0 y > Qandsinhy = 0ifx < [k

40, Usethe first and second derivatives to explain the properties of
the graph of tanh.x .
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46,

47.

48.

44,

50,

52

53.
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Use the frst and second derivatives o explain the properties of
the graph of cosh x,

Prove thatcosh® x — sinh® x = 1.
Find an explicit formula, as in example 9.4, for cosh™' x.
Find an explicit formula, as in example 9.4, for tanh—! x.

Suppose that a hanging cable has the shape 10 coshix/10) for
—20 = x = 20. Find the amount of sag in the cable.

Finad the leagth of the cable in exencise 45,

Suppose that a hanging cable has the shape 15coshix/15) for
—25 = x = 25. Find the amount of sag in the cable.

Find the length of the cable in exercise 47,

Suppose that a hanging cable has the shape o coshix/ja) for
—b = x = b. Show that the amount of sag is given by
acoshib/a) —a and the fength of the cable is 2a sinh(b/a).

Show that cosh{—x) = coshx {ie.. cosh xis an even function)
apd sinh{—x} = —sinhx (ie.. sinh ¥ is an odd function).

Show that £ = coshx 4 sinhx. In fact, we will show that this
is the only way to write £* as the sum of even and odd func-
tions. To see this, assume that € = f{x) + g(x), where [ is
gven and g is odd. Show that €7 = Jix) — g{x). Adding
equations and dividing by two, conclude that f{x) = coshax.
Then conclude that g{x) = sinhx.

Show that both cosh x and sinh x are solutions of the differen-
tial equation ¥* — y = 0. By comparison. show that both cos x
and sin x are solutions of the differential equation ¥* 4y = 0.

Show that im tanhx = | amd Hm tanhx = —1.
g A =0
£ -1
Show that tanhx = — :
et 1

L this exercise, we solve the initial value problem for the ver-
tical velocity »(t) of a falling object subject to gravity and air
drag. Assume that mv'(ty = —mg + &v° for some positive
constant k.

—v'i{t) = i
£

i3

{a) Rewrite the equation as —
vt —

=

17 1 I
(b} Use the identity ﬁi_,_, el ( = ) with
v gt 2alv—a vta,

mg S
a=, 5 to solve the equation in {a).

— 3 trplemt

e B
e} Show that vity = — fﬂ C——~,_-—~1f
* Eé‘,‘l‘,&:}_gg‘mf 44

() Use the initial condition v{0) = 0 to show thate = 1.



54,

39,

al.

e} Use the result of exercise 54 to conclude that

i = PR o e
hf.:}—*ﬁﬁ%ﬁlm(‘;—gf),

(£ Find the terminal velocity by computing fﬁm i),
) — D20

Integrate the velocity function in exercise 55 part (i) to find the
distance fallen in 7 seconds.

Two skydivers of weight 300 N drop from a helght of 1000 m.
The first skydiver dives head-first with a drag coefficient of
k= % The second skydiver is in a spread-eagle position
with & = 1. Compare the terminal velocities and the distances
fallen in 2 seconds; 4 seconds.

A skydiver with an open parachute has terminat velocity 5 nws.
I the weight is 800 N, determine the value of k.

Long and Weiss derive the following equation for the horizontal
velocity of the space shuttle during re-entry {see section 4.1}
w(r) = 7201 tanhi—0.001247 + tanh~1 (v, /7901)) mfs, where
y is the velocity at time ¢ = . Find the maximum acceleration
experienced by the shutile from this horizontal motion (.e.,
maximize v {}]).

Graph the velocity function in exescisa 59 with vy = 2000, Es-
timate the ime ¢ at which v(f) = 0.

The Saint Louis Gateway Arch is both 830 feet wide and
630 feet tall. Its shape looks very much like a parabola,
but is actually & hyperbolic cosine. You will explore the differ-
snce between the two functions in this exercise. First, consider
the model y = 757.7 — 127 Tcosh(x/127.7} for ¥ = 0. Find
the ¥- and y-intercepts and show that this model (approximately)
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matches the arch’s measurements of 620 feet wide and 630 fest
tall. What would the 127.7 in the model have to be to match the
measurpments exactly? Now, consider a parabolic model. To
have x-intercepts ¥ = —315 and x = 3135, explain why the
model must have the form ¥ = —c{x+ 315)(x — 315) for
some positive constant . Then find ¢ to match the desired
y-intercept of 630. Graph the parabola and hyperbolic cosine
on the same axes for —313 < x < 315, How much difference is
there between the graphs? Find the maximam distance between
the curves. The authors have seen mathematics books where the
arch is modeled by a parabola. How wrong is it to do this?

% Suppose a person jumps out of an adrplane from a great

© height. There are two primary forces acting on the
skydiver: gravity and air resistance. In this situation, the air
resistance would be propertional to the sguare of the velocity.
Then an egquation for the {downward) velocity wounld be
v = g —cv?, where g is the gravitational constant and ¢ is a
constant determined by the orientation of the jumper's body.
Replace ¢ with g}v% and explain why the initial condition
v{D) = O is reasonable. Then show that the solufion of the IVP
can be written in the form v = vy tanh{g? fv7). Show that v, the
downward velocity, s an Increasing function and find the limit-
ing velocity, usually called the terminal velixity, ast — 00. As
mentioned above, the constant ¢ depends on the position of the
jumper’s body. I spread-eagle represents a c-value four times as
targe as a head-first dive, compare the corresponding ferminal
velocities. You may have seen video of skydivers jumping ot of
& plane at different times but catching vp to each other and form-
ing a circle. Explain how one diver could cateh up to someone
who jumped out of the plane earlier. Now, integrate the velocity
Function to obtain the distance function. Finally, answer the fol-
towing bwo-part question. How much time and beight dees it
take for a skydiver to reach 20% of terminal velocity?

9

. e - 18, eos-la®
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