SAMPLE EXAM 2

1. A proton is in an infinite square well potential for which: (15 pts)

$$U(x) = 0 \text{ for } 0 < x < L$$

 $U(x) = \infty$ for x < 0 and x > L

Take the length of the square well potential to be $L=10^{-15}$ m.

- a) Derive the wavefunction for the proton inside the well.
- b) Derive an expression for the momentum and energy.
- c) Calculate the ground state energy in MeV.
- d) Make an energy level diagram and find the wavelengths of the photons emitted for all transitions beginning at state n=3 or less and ending at a lower energy state.
- 2. An electron in the hydrogen atom is in the first excited state (n=2). (20 pts)
 - a) Obtain an expression for all the spatial wavefunctions in this state.
 - b) Obtain an expression for the radial probability density associated with each wavefunction in part (a).
 - c) Obtain an expression for the probability density associated with each wavefunction in part (a). Do these probability densities depend on time? Explain.
 - d) Graph the radial probability densities obtained in part (b) and label where the electron is most likely to be found.
 - e) Sketch the probability densities (electron clouds) found in part (c) and label where the electron is most likely to be found.
 - f) What are the physical interpretation of the wavefunctions in part (a), the radial probability densities in part (b), and the probability densities in part (c)?
 - g) Where is the electron most likely to be found in the n=2 state?
- 3. The wavefunction for a particle is given by

$$\Psi(x,t) = A e^{\alpha x^2 - i\omega t}$$

- a) Describe the physical significance of $|\Psi(x,t)|$.
- b) Describe the physical significance of $|\Psi(x,t)|^2$.
- c) Write an expression for the probability of finding the electron in the interval $(-2\alpha, 2\alpha)$. Leave you answer in terms of the constant A. Do not evaluate your expression!
- d) If the wavefunction $\Psi(x,t)$ was normalized, what would be the probability of finding the particle in the interval $(-\infty, +\infty)$?
- 4. Calculate the uncertainty product $\Delta r \Delta p$ for the 1s electron of hydrogen.