INTRODUCTION:

Welcome to integration calculus. I am Millia Ison. I have been teaching at DeAnza College for almost 30 years. I plan to work with you closely to help you to succeed. In this course, you will use of your algebra, and pre calculus skills to work with higher level mathematics and solve interesting application problems.

You will need to spent at least 25 hours a week to study the material, do homework and quizzes. Homework and quizzes are on webassign. About $\$ 100$ to purchase the access online. If you used webassign in Math 1A or 1B at DeAnza, you may already have your account. Class code is in the syllabus next page.

Homework: You have 5 submissions to get the correct answer for a question to earn a point. It is very important for you to understand the comcepts when you do problems. You need to practice until you can do a problem without a sample example, notes or hint. Sections listed on the class syllabus calendar are suggested study plan.

Quizzes: You have quiz twice a week. I list section number as quiz name on webassign. For example Quiz 10.2 means this quiz covers section 10.2 in the text. Learn the material and do the related homework first before you start quiz. You have $\mathbf{3}$ submissions for each question on quiz. Quiz(zes) will be available Monday 8 am weekly, due the following Sunday $11: 59 \mathrm{pm}$. Once you start, you have 60 minutes to finish. NO EXTENSION.

Exams and Final: Reveiws for each exam will be provided on Webassgn a few days before the exam for you to prepare. Doing the reviews will not earn you any points for your grade. Exams and Final are to test your understanding of the course material. Questions on exams are similar to the questions on the reviews.

Need Help?

1. Tutoring is available both on-campuus and online. See http://deanza.edu/studentsuccess/mstrc/
2. Post questions in the Discussion section in Canvas
3. Email me at isonmillia@deanza.edu
4. Form a study group with other students in the class
5. Follow the "NetTutor" on the navigation in Canvas

Students with disability-related need for academic accomidations or services, please contact Disability Support Services (DSS) 4088648753 or Educational Diognistic Center (EDC) 408864 8839. The Center will inform me your situation. You may take exams at EDC, but you must schedule with EDC Wednesday or Thursday of the official exam week. You need to schedule one week ahead the exam day.

COURSE: Math 1C-61 Calculus QUARTER: Spring 2020
MW 6:30-8:45 pm INSTRUCTOR: Millia Ison
EMAIL: isonmillia@fhda.edu OFFICE PHONE: 864-5659
OFFICE HOUR : TuTh 12:30-1:20 pm Online Canvas Discussion or By email online
COURSE PREREQUISITES: Math 1B, or equivalent course with a grade " C " or better.
TEXT: Calculus: Early Transcendentals, by James Stewart, 8th edition.
ENROLL WEB ASSIGN : Webassign.net . For This Quarter Only, free accesss to WebAssign: http://embed.widencdn.net/pdf/plus/cengage/tkbyycgpir/cu-covid-start-strong-free-trial-flyer1348236.pdf. Class code: deanza 07517131 Homework and quizzes are on Web Assign.

EQUIPMENT: A graphic calculator or a computer with graph capability is required.

GRADING:

Homework ----140 points
Quizzes --------80 points
2 midterms --- 160 points
Final exam ---- 120 points
Total ----------- 500 points
$\mathrm{C}+: 76 \%-79 \%, 380-399 \mathrm{pts}$
C: $70 \%-75 \%, 350-379$ pts
D: 60 \% - 69 \%, 300-349 pts
F: $0 \%-59 \%, 0-299 \mathrm{pts}$

HOMEWORK POINTS: You need to do your homework on a regular bases. However all homework is due on June 23, 11:59 pm. No Extension under any circumstances. Total points on WebAssign is 1136 (subject to change). Out of which, 1045 points are required (subject to change). If you have 1045, you earn 75 points (full credit) toward your grade. If you have total of 1100, then $1120 / 10451.07$, that is $107 \%, 107 \% \quad 7580$, you have 80 points for homework, which is 5 points extra credit. The total amount of the extra credit will be decided after the final exam.

QUIZ POINTS: 2 quizzes each week (1 quiz if a week has exam), due Sundays $11: 59 \mathrm{pm}$, available 1 week before due. NO EXTENSION under any circumstances. If the deadline is missed, you get 0 for the quiz. There are 18 quizzes this quarter. 2 lowest scores will be dropped.

EXAM POINTS: 80 points each.
Exam 1: May 6, Wednesday
Exam 2: June 8, Monday
No make-up midterm exams. Absences are counted as 0's. If the percent of your final exam score is higher than some of your exams, it will replace the lowest exam score. It can only replace 1 out of 2 exams. For example: your lowest exam score is 73%, your achieve $120 / 150$ on the final exam, which is 80%. Then the 73 on the exam is replaced by 80 . If all your 3 exams are higher than your final exam percentage, then your exam scores will not change. People doing better on the final will help their overall score.

FINAL EXAM: 120 points.
Wednesday, June 24, 6:15-8:15 pm
Fail to take the final exam, you will receive "F" for your grade. Exams are to test your understanding of the homework assignments. Cheating of any form on midterm exams or final exam will be grounds for disciplinary action.

IMPORTANT DATES: Sunday, April. 19 --- Last day to drop without grade on your record. Friday, June 5 --- Last day to drop with a "W".
Student misses numerouse quizzes and not come for exams without contact me may result in a "W" or "F" for the class. Student is responsible to withdraw from the class. The last day for you to withdraw is June 5. After that day, you will receive a grade.

Text: Stewart 8 $^{\text {th }}$ edition
Math 1C-61 Spring 2020 Calendar
MW 6:30-8:45pm

Chapter	SEC	PROBLEMS		Monday	Tuesday	Wednesday	Thursday	Friday
Parametric Equations AndPolar Coordinate	$\begin{aligned} & \hline 10.1 \\ & 10.2 \\ & 10.3 \end{aligned}$	Curves Defined by Parametric Equations Calculus with Parametric Curves Polar Coordinates Areas and Lengths in Polar Coordinates	April	6	7	8	9	10
	10.4		April Wk1	$10.1,10.2^{13}$	14	$\begin{aligned} & \hline 15 \\ & 10.3,10.4 \\ & \text { Quiz } 10.2 \\ & \hline \end{aligned}$	16	17
Infinite Sequencs And Series	$\begin{aligned} & 11.2 \\ & 11.3 \\ & 11.4 \end{aligned}$	Sequences Series The Integral Test and Estimates of Sums The Comparison Tests Alternating Series Absolute Convergence \& the Ratio and Root Tests Strategy for Testing Series Power Series Representations of Functions as Power Series Taylor and MacLaurin Series Applications of Taylor Polynomials	April Wk2	$\begin{array}{cc} \hline 10.4 \\ 20 \\ \text { Quiz } 10.4 \end{array}$	21	$\begin{aligned} & 22 \\ & 11.1,11.2^{22} \\ & \text { Quiz } 11.1 \\ & \hline \end{aligned}$	23	24
	$\begin{aligned} & 11.5 \\ & 11.6 \\ & 11.7 \end{aligned}$		April May Wk3	$\begin{aligned} & 11.2,11.3^{27} \\ & \text { Quiz } 11.2,3 \\ & \hline \end{aligned}$	28	$\begin{aligned} & 29 \\ & 11.4,11.5 \\ & \text { Quiz } 11.4,5 \\ & \hline \end{aligned}$	30	1
	$\begin{gathered} 11.8 \\ 11.9 \\ 11.10 \end{gathered}$		May Wk4	$\begin{aligned} & 4 \\ & 11.6,11.7 \\ & \text { Quiz11.6,7 } \\ & \hline \end{aligned}$	5	$\begin{aligned} & \quad{ }^{6} \text { Exam } 1 \\ & 4-5: 30 \mathrm{pm} \end{aligned}$	7	8
	11.11		May Wk5	$11.8,11.9$ Quiz 11.8,9	12	$\begin{gathered} 11.10 \\ \text { Quiz11.10 } \end{gathered}$	14	15
Vector And The Geometry Of Space	$\begin{aligned} & 12.2 \\ & 12.3 \\ & 12.4 \end{aligned}$	Three-Dimensional Coordinate Systems Vectors The Dot Product The Cross Product Equations of Lines and Planes Cylinders and Quadric Surfaces	May Wk6	18 $11.10,11.11$ Quiz11.10,11	19	$\begin{gathered} 20 \\ 12.1,12.2 \\ \text { Quiz 12.1,2 } \end{gathered}$	21	22
	$\begin{aligned} & 12.5 \\ & 12.6 \end{aligned}$		May Wk7	```None Holiday Memorial Day ```	26	$\begin{aligned} & \quad 27 \\ & 12.3,12.4 \\ & \text { Quiz } 12.3 \\ & \hline \end{aligned}$	28	29
Vector Functions	$\begin{aligned} & \hline 13.1 \\ & 13.2 \\ & 13.3 \end{aligned}$	Vector Functions and Space Curves Derivatives and Integrals of Vector Functions Arc Length and Curvature Motion in Space: Velocity and Acceleration	June Wk8	$\begin{gathered} 1 \\ 12.5 \\ \text { Quiz12.4,5 } \end{gathered}$	2	$\begin{gathered} 12 \\ 12.6 \\ \text { Quiz12.5,6 } \\ \hline \end{gathered}$	4	last day to drop w/W
	13.4		June Wk9	$\begin{gathered} \text { Exam 2 }^{8} \\ 4-5: 30 \mathrm{pm} \\ \hline \end{gathered}$	9	$\begin{gathered} 10 \\ 13.1,13.2 \\ \text { Quiz13.1,2 } \end{gathered}$	11	12
All homework assignments and due dates are listed on WebAssign. These are the least amount of exercises you need to do. If you don't master the material well afterdoing WebAssign, work with more of the similar problems in the text.			June Wk10	$\begin{array}{cr} 13.3 \\ \text { Quiz } 13.3 \\ \hline \end{array}$	16	$\begin{gathered} 17 \\ 13.4 \\ \text { Quiz } 13.4 \\ \hline \end{gathered}$	18	19
			June Wk11	Reivew ${ }^{22}$	23	$\begin{gathered} 24 \\ \text { Final } \\ 6: 15-8: 15 p \\ \hline \end{gathered}$	25	26

Student Learning Outcome(s):

*Graphically, analytically, numerically and verbally analyze infinite sequences and series from the perspective of convergence, using correct notation and mathematical precision.
*Apply infinite sequences and series in approximating functions.
*Synthesize and apply vectors, polar coordinate system and parametric representations in solving problems in analytic geometry, including motion in space.

