DE ANZA COLLEGE INSTRUCTOR: E. NJINIMBAM

MATH *1C-03*

ROOM Online (M-TH) 10:00-12:15 pm

SUMMER 2020*5*

PREREQUISITE: Math 1B or equivalent.

TEXTBOOK: <u>CALCULUS : Early Transcendentals; 7nd ed.</u>, James Stewart.

MATERIALS: Graphing calculator (*TI–84 recommended*)

A computer

Lectures would be on zoom

The zoom meeting ID: https://cccconfer.zoom.us/j/94820136783

GOAL: To understand and be able to solve problems dealing with: differential

equations; infinite sequences and series; Taylors' polynomials; Vectors, and

equations of lines and planes in 3-D; and quadric surfaces.

ATTENDANCE: You are encourage to attend the classes on zoom

HOMEWORK: Home will be assign on Canvas but not graded

QUIZZES: Quizzes(3) will be given on Canvas. NO MAKE UPS.

TESTS: Tests (2) will be given. On Canvas NO MAKE UPS.

FINAL EXAM: A two-hour comprehensive final exam will be given on

THURSDAY, AUGUST 6 (12:30-2:45 pm). THIS IS A MUST EXAM.

A grade of **F** will be assigned to those who miss the final exam.

Note: All testing to be done during class time on canvas.

GRADE: Quizzes------100pts. A: 90% - 100% (450+pts.)

Tests (2) @ 100pts.----200pts. B: 80% - 89% (400-449pts.)

Final Exam	200pts.	C: 60% - 79%	(300-399pts.)
TOTAL	500pts.	D:50% - 59%	(250-299pts.)
		F: 0% - 49%	(0-249pts.)

IMPORTANT DATES: See Reverse Side.

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRI	SAT	SUN
July	29 INSTRUCTION BEGINS Chap 10	30 Chap 10 (10.1-10.4)	1 Chap 10	Chap 11 Quiz 1	3 Holiday	4	5
July	Chap 11 (11.1-11.11)	7 Chap 11	8 Chap 11	9 Last day to request pass/no pass Review/ Test 1	10	11	12
July	13 Chap 11	14 Chap 11	15 Chap 11	16 Chap 11 Quiz 2	17	18	19
July	20 Chap 17 (7.4)	21 Chap 12 (12.1-12.6)	22 Chap 12	23 Review Test 2	24	25	26
July August	27 Chap 12	28 Chap 12	29 Chap 13 (13.1-13.4)	30 Chap 13 Quiz 3	31	1	2
August	3 Chap 13	4 Chap 13	5 Chap 13	6 INSTRUCTION Ends FINALS	7	8	9
Aug 10 to Sept							

Student Learning Outcome(s):

- *Graphically, analytically, numerically and verbally analyze infinite sequences and series from the perspective of convergence, using correct notation and mathematical precision.
- *Apply infinite sequences and series in approximating functions.
- *Synthesize and apply vectors, polar coordinate system and parametric representations in solving problems in analytic geometry, including motion in space.