Math 1D, section 02ZCalculus 4Spring 2022

Instructor: Rick Taylor (Roderic Taylor) **E-mail:** <u>taylorroderic@fhda.edu</u>

Classes: Classes will be held, 9:30 am - 10:20 pm, on Monday-Friday, on Zoom. While you are encouraged to attend these synchronously to have the opportunity to speak and participate during class, this is not required, and recordings of lectures will be made available.

WebAssign: WebAssign is required for this class. Assignments will be weighted 10-20 points towards your grade (the exact amount will be determined by what is most advantageous to the student).

Text: Calculus: Early Transcendental, 8th edition, by James Stewart, published by Thomson Brooks/Cole, 2016. An electronic version of this text is included with WebAssign.

Calculator: A scientific calculator with trigonometric and exponential functions or a graphing calculator is required for this class.

Canvas Assignments: There will be some short homework assignments that will be collected on Canvas. These will be weighted 0-10 points towards your final grade. Only assignments that are completed will be counted, so this cannot decrease your grade average.

Midterm Exams: There will be three midterm exams for this course. Midterms will be held asynchronously online. Each midterm exam will be weighted 20 points towards your grade. Makeup exams will not be given. Instead, the final exam will automatically replace your lowest midterm grade if it is higher.

Final Exam: The final exam will be given asynchronously on Tuesday, June 21. It will be weighted 20 points towards your grade. Taking the final is required to pass the course.

Grade: The final grade is determined by the weighted average of quizzes, midterms, and finals as described above.

- A 92% 100%
- A- 90% 91%
- B+ 86% 89%
- B 83% 85%
- B- 80% -82%
- C+ 70% 79%
- C 60% -69%
- D 40% 59%
- F 0% 39%

An F will also be given in the case one gets a 0 on the final exam.

Honors: If you are taking the honors version of this class, you will be expected to do extra work, either proposing and carrying out an independent project, or viewing supplemental lecture material and doing extra problems I assign. Failure to do this work will result in lowering the grade for the course by one level (for example from A to A-, or A- to B+).

Policy on dropping: I am required to drop students who do not attend any of the first two weeks of classes. After that, if you decide you no longer wish to take this class it is your responsibility to go online and formally drop the class by the appropriate deadline. If you fail to do so, I will be unable to drop you at a later date.

Policy on Academic Integrity: If a student is found to have cheated on an exam, they will receive a 0 for that exam. They will not be able to replace that score with the final exam grade their average as they normally might when computing the final grade.

Academic Help: Mathematics is a challenging subject which takes time and effort to master. Of course, students differ in their backgrounds, but in general you should expect to do a minimum of 10 hours of work per week reading the book, doing homework, and thinking about the material. This is in addition to the time you spend in class. If you find you are having difficulty with the material, it is important to address the situation immediately, as it's easy to fall behind. The tutorial center is available online for brief questions, as well as one on one sessions with a designated tutor. In addition, I encourage all students to come to my office hours listed above. Often, I'm able to help students talking with them individually in a way that's not possible in a large lecture class.

Student Learning Outcome(s):

*Graphically and analytically synthesize and apply multivariable and vector-valued functions and their derivatives, using correct notation and mathematical precision. *Use double, triple and line integrals in applications, including Green's Theorem, Stokes' Theorem and Divergence Theorem.

*Synthesize the key concepts of differential, integral and multivariate calculus.